Single.cs source code in C# .NET

Source code for the .NET framework in C#

                        

Code:

/ FXUpdate3074 / FXUpdate3074 / 1.1 / untmp / whidbey / QFE / ndp / clr / src / BCL / System / Single.cs / 1 / Single.cs

                            // ==++== 
//
//   Copyright (c) Microsoft Corporation.  All rights reserved.
//
// ==--== 
/*============================================================
** 
** Class:  Single 
**
** 
** Purpose: A wrapper class for the primitive type float.
**
**
===========================================================*/ 
namespace System {
 
    using System.Globalization; 
    using System;
    using System.Runtime.InteropServices; 
    using System.Runtime.CompilerServices;
    using System.Runtime.ConstrainedExecution;

    [Serializable(), System.Runtime.InteropServices.StructLayout(LayoutKind.Sequential)] 
[System.Runtime.InteropServices.ComVisible(true)]
    public struct Single : IComparable, IFormattable, IConvertible 
#if GENERICS_WORK 
        , IComparable, IEquatable
#endif 
    {
        internal float m_value;

        // 
        // Public constants
        // 
        public const float MinValue = (float)-3.40282346638528859e+38; 
        public const float Epsilon = (float)1.4e-45;
        public const float MaxValue = (float)3.40282346638528859e+38; 
        public const float PositiveInfinity = (float)1.0 / (float)0.0;
        public const float NegativeInfinity = (float)-1.0 / (float)0.0;
        public const float NaN = (float)0.0 / (float)0.0;
 
        public unsafe static bool IsInfinity(float f) {
            return (*(int*)(&f) & 0x7FFFFFFF) == 0x7F800000; 
        } 
        public unsafe static bool IsPositiveInfinity(float f) {
            return *(int*)(&f) == 0x7F800000; 
        }
        public unsafe static bool IsNegativeInfinity(float f) {
            return *(int*)(&f) == unchecked((int)0xFF800000);
        } 

        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)] 
        public static bool IsNaN(float f) { 
            //Jit will generate inlineable code with this
// warning CS1718:  Comparison to same variable 
#pragma warning disable 1718
            if (f != f)
            {
                return true; 
            }
            else 
            { 
                return false;
            } 
#pragma warning restore 1718
        }

        // Compares this object to another object, returning an integer that 
        // indicates the relationship.
        // Returns a value less than zero if this  object 
        // null is considered to be less than any instance. 
        // If object is not of type Single, this method throws an ArgumentException.
        // 
        public int CompareTo(Object value) {
            if (value == null) {
                return 1;
            } 
            if (value is Single) {
                float f = (float)value; 
                if (m_value < f) return -1; 
                if (m_value > f) return 1;
                if (m_value == f) return 0; 

                // At least one of the values is NaN.
                if (IsNaN(m_value))
                    return (IsNaN(f) ? 0 : -1); 
                else // f is NaN.
                    return 1; 
            } 
            throw new ArgumentException (Environment.GetResourceString("Arg_MustBeSingle"));
        } 


        public int CompareTo(Single value) {
            if (m_value < value) return -1; 
            if (m_value > value) return 1;
            if (m_value == value) return 0; 
 
            // At least one of the values is NaN.
            if (IsNaN(m_value)) 
                return (IsNaN(value) ? 0 : -1);
            else // f is NaN.
                return 1;
        } 

        public override bool Equals(Object obj) { 
            if (!(obj is Single)) { 
                return false;
            } 
            float temp = ((Single)obj).m_value;
            if (temp == m_value) {
                return true;
            } 

            return IsNaN(temp) && IsNaN(m_value); 
        } 

        public bool Equals(Single obj) 
        {
            if (obj == m_value) {
                return true;
            } 

            return IsNaN(obj) && IsNaN(m_value); 
        } 

        public unsafe override int GetHashCode() { 
            float f = m_value;
            if (f == 0) {
                // Ensure that 0 and -0 have the same hash code
                return 0; 
            }
            int v = *(int*)(&f); 
            return v; 
        }
 
        public override String ToString() {
            return Number.FormatSingle(m_value, null, NumberFormatInfo.CurrentInfo);
        }
 
        public String ToString(IFormatProvider provider) {
            return Number.FormatSingle(m_value, null, NumberFormatInfo.GetInstance(provider)); 
        } 

        public String ToString(String format) { 
            return Number.FormatSingle(m_value, format, NumberFormatInfo.CurrentInfo);
        }

        public String ToString(String format, IFormatProvider provider) { 
            return Number.FormatSingle(m_value, format, NumberFormatInfo.GetInstance(provider));
        } 
 
        // Parses a float from a String in the given style.  If
        // a NumberFormatInfo isn't specified, the current culture's 
        // NumberFormatInfo is assumed.
        //
        // This method will not throw an OverflowException, but will return
        // PositiveInfinity or NegativeInfinity for a number that is too 
        // large or too small.
        // 
        public static float Parse(String s) { 
            return Parse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo);
        } 

        public static float Parse(String s, NumberStyles style) {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            return Parse(s, style, NumberFormatInfo.CurrentInfo); 
        }
 
        public static float Parse(String s, IFormatProvider provider) { 
            return Parse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.GetInstance(provider));
        } 

        public static float Parse(String s, NumberStyles style, IFormatProvider provider) {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            return Parse(s, style, NumberFormatInfo.GetInstance(provider)); 
        }
 
        private static float Parse(String s, NumberStyles style, NumberFormatInfo info) { 
            try {
                return Number.ParseSingle(s, style, info); 
            } catch (FormatException) {
                //If we caught a FormatException, it may be from one of our special strings.
                //Check the three with which we're concerned and rethrow if it's not one of
                //those strings. 
                String sTrim = s.Trim();
                if (sTrim.Equals(info.PositiveInfinitySymbol)) { 
                    return PositiveInfinity; 
                }
                if (sTrim.Equals(info.NegativeInfinitySymbol)) { 
                    return NegativeInfinity;
                }
                if (sTrim.Equals(info.NaNSymbol)) {
                    return NaN; 
                }
                //Rethrow the previous exception; 
                throw; 
            }
        } 

        public static Boolean TryParse(String s, out Single result) {
            return TryParse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result);
        } 

        public static Boolean TryParse(String s, NumberStyles style, IFormatProvider provider, out Single result) { 
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style); 
            return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result);
        } 

        private static Boolean TryParse(String s, NumberStyles style, NumberFormatInfo info, out Single result) {
            if (s == null) {
                result = 0; 
                return false;
            } 
            bool success = Number.TryParseSingle(s, style, info, out result); 
            if (!success) {
                String sTrim = s.Trim(); 
                if (sTrim.Equals(info.PositiveInfinitySymbol)) {
                    result = PositiveInfinity;
                } else if (sTrim.Equals(info.NegativeInfinitySymbol)) {
                    result = NegativeInfinity; 
                } else if (sTrim.Equals(info.NaNSymbol)) {
                    result = NaN; 
                } else 
                    return false; // We really failed
            } 
            return true;

        }
 
        //
        // IValue implementation 
        // 

        public TypeCode GetTypeCode() { 
            return TypeCode.Single;
        }

 
        /// 
        bool IConvertible.ToBoolean(IFormatProvider provider) { 
            return Convert.ToBoolean(m_value); 
        }
 
        /// 
        char IConvertible.ToChar(IFormatProvider provider) {
            throw new InvalidCastException(String.Format(CultureInfo.CurrentCulture, Environment.GetResourceString("InvalidCast_FromTo"), "Single", "Char"));
        } 

        ///  
        sbyte IConvertible.ToSByte(IFormatProvider provider) { 
            return Convert.ToSByte(m_value);
        } 

        /// 
        byte IConvertible.ToByte(IFormatProvider provider) {
            return Convert.ToByte(m_value); 
        }
 
        ///  
        short IConvertible.ToInt16(IFormatProvider provider) {
            return Convert.ToInt16(m_value); 
        }

        /// 
        ushort IConvertible.ToUInt16(IFormatProvider provider) { 
            return Convert.ToUInt16(m_value);
        } 
 
        /// 
        int IConvertible.ToInt32(IFormatProvider provider) { 
            return Convert.ToInt32(m_value);
        }

        ///  
        uint IConvertible.ToUInt32(IFormatProvider provider) {
            return Convert.ToUInt32(m_value); 
        } 

        ///  
        long IConvertible.ToInt64(IFormatProvider provider) {
            return Convert.ToInt64(m_value);
        }
 
        /// 
        ulong IConvertible.ToUInt64(IFormatProvider provider) { 
            return Convert.ToUInt64(m_value); 
        }
 
        /// 
        float IConvertible.ToSingle(IFormatProvider provider) {
            return m_value;
        } 

        ///  
        double IConvertible.ToDouble(IFormatProvider provider) { 
            return Convert.ToDouble(m_value);
        } 

        /// 
        Decimal IConvertible.ToDecimal(IFormatProvider provider) {
            return Convert.ToDecimal(m_value); 
        }
 
        ///  
        DateTime IConvertible.ToDateTime(IFormatProvider provider) {
            throw new InvalidCastException(String.Format(CultureInfo.CurrentCulture, Environment.GetResourceString("InvalidCast_FromTo"), "Single", "DateTime")); 
        }

        /// 
        Object IConvertible.ToType(Type type, IFormatProvider provider) { 
            return Convert.DefaultToType((IConvertible)this, type, provider);
        } 
    } 
}

// File provided for Reference Use Only by Microsoft Corporation (c) 2007.
// Copyright (c) Microsoft Corporation. All rights reserved.
                        

Link Menu

Network programming in C#, Network Programming in VB.NET, Network Programming in .NET
This book is available now!
Buy at Amazon US or
Buy at Amazon UK