Code:
/ WCF / WCF / 3.5.30729.1 / untmp / Orcas / SP / ndp / cdf / src / WCF / ServiceModel / System / ServiceModel / SynchronizedPool.cs / 1 / SynchronizedPool.cs
//------------------------------------------------------------ // Copyright (c) Microsoft Corporation. All rights reserved. //----------------------------------------------------------- namespace System.ServiceModel { using System.Collections.Generic; using System.Threading; using System.Security; using System.Security.Permissions; // A simple synchronized pool would simply lock a stack and push/pop on return/take. // // This implementation tries to reduce locking by exploiting the case where an item // is taken and returned by the same thread, which turns out to be common in our // scenarios. // // Initially, all the quota is allocated to a global (non-thread-specific) pool, // which takes locks. As different threads take and return values, we record their IDs, // and if we detect that a thread is taking and returning "enough" on the same thread, // then we decide to "promote" the thread. When a thread is promoted, we decrease the // quota of the global pool by one, and allocate a thread-specific entry for the thread // to store it's value. Once this entry is allocated, the thread can take and return // it's value from that entry without taking any locks. Not only does this avoid // locks, but it affinitizes pooled items to a particular thread. // // There are a couple of additional things worth noting: // // It is possible for a thread that we have reserved an entry for to exit. This means // we will still have a entry allocated for it, but the pooled item stored there // will never be used. After a while, we could end up with a number of these, and // as a result we would begin to exhaust the quota of the overall pool. To mitigate this // case, we throw away the entire per-thread pool, and return all the quota back to // the global pool if we are unable to promote a thread (due to lack of space). Then // the set of active threads will be re-promoted as they take and return items. // // You may notice that the code does not immediately promote a thread, and does not // immediately throw away the entire per-thread pool when it is unable to promote a // thread. Instead, it uses counters (based on the number of calls to the pool) // and a threshold to figure out when to do these operations. In the case where the // pool to misconfigured to have too few items for the workload, this avoids constant // promoting and rebuilding of the per thread entries. // // You may also notice that we do not use interlocked methods when adjusting statistics. // Since the statistics are a heuristic as to how often something is happening, they // do not need to be perfect. // class SynchronizedPoolwhere T : class { Entry[] entries; PendingEntry[] pending; GlobalPool globalPool; int maxCount; int promotionFailures; const int maxPendingEntries = 128; const int maxReturnsBeforePromotion = 64; const int maxPromotionFailures = 64; const int maxThreadItemsPerProcessor = 16; public SynchronizedPool(int maxCount) { int threadCount = maxCount; int maxThreadCount = maxThreadItemsPerProcessor + SynchronizedPoolHelper.ProcessorCount; if (threadCount > maxThreadCount) threadCount = maxThreadCount; this.maxCount = maxCount; this.entries = new Entry[threadCount]; this.pending = new PendingEntry[4]; this.globalPool = new GlobalPool(maxCount); } object ThisLock { get { return this; } } public void Clear() { Entry[] entries = this.entries; for (int i = 0; i < entries.Length; i++) { entries[i].value = null; } globalPool.Clear(); } void HandlePromotionFailure(int thisThreadID) { int newPromotionFailures = this.promotionFailures + 1; if (newPromotionFailures >= maxPromotionFailures) { lock (ThisLock) { this.entries = new Entry[this.entries.Length]; globalPool.MaxCount = maxCount; } PromoteThread(thisThreadID); } else { this.promotionFailures = newPromotionFailures; } } bool PromoteThread(int thisThreadID) { lock (ThisLock) { for (int i = 0; i < this.entries.Length; i++) { int threadID = this.entries[i].threadID; if (threadID == thisThreadID) { return true; } else if (threadID == 0) { globalPool.DecrementMaxCount(); this.entries[i].threadID = thisThreadID; return true; } } } return false; } void RecordReturnToGlobalPool(int thisThreadID) { PendingEntry[] localPending = this.pending; for (int i = 0; i < localPending.Length; i++) { int threadID = localPending[i].threadID; if (threadID == thisThreadID) { int newReturnCount = localPending[i].returnCount + 1; if (newReturnCount >= maxReturnsBeforePromotion) { localPending[i].returnCount = 0; if (!PromoteThread(thisThreadID)) { HandlePromotionFailure(thisThreadID); } } else { localPending[i].returnCount = newReturnCount; } break; } else if (threadID == 0) { break; } } } void RecordTakeFromGlobalPool(int thisThreadID) { PendingEntry[] localPending = this.pending; for (int i = 0; i < localPending.Length; i++) { int threadID = localPending[i].threadID; if (threadID == thisThreadID) { return; } else if (threadID == 0) { lock (localPending) { if (localPending[i].threadID == 0) { localPending[i].threadID = thisThreadID; return; } } } } if (localPending.Length >= maxPendingEntries) { this.pending = new PendingEntry[localPending.Length]; } else { PendingEntry[] newPending = new PendingEntry[localPending.Length * 2]; Array.Copy(localPending, newPending, localPending.Length); this.pending = newPending; } } public bool Return(T value) { int thisThreadID = Thread.CurrentThread.ManagedThreadId; if (thisThreadID == 0) return false; if (ReturnToPerThreadPool(thisThreadID, value)) return true; return ReturnToGlobalPool(thisThreadID, value); } bool ReturnToPerThreadPool(int thisThreadID, T value) { Entry[] entries = this.entries; for (int i = 0; i < entries.Length; i++) { int threadID = entries[i].threadID; if (threadID == thisThreadID) { if (entries[i].value == null) { entries[i].value = value; return true; } else { return false; } } else if (threadID == 0) { break; } } return false; } bool ReturnToGlobalPool(int thisThreadID, T value) { RecordReturnToGlobalPool(thisThreadID); return globalPool.Return(value); } public T Take() { int thisThreadID = Thread.CurrentThread.ManagedThreadId; if (thisThreadID == 0) return null; T value = TakeFromPerThreadPool(thisThreadID); if (value != null) return value; return TakeFromGlobalPool(thisThreadID); } T TakeFromPerThreadPool(int thisThreadID) { Entry[] entries = this.entries; for (int i = 0; i < entries.Length; i++) { int threadID = entries[i].threadID; if (threadID == thisThreadID) { T value = entries[i].value; if (value != null) { entries[i].value = null; return value; } else { return null; } } else if (threadID == 0) { break; } } return null; } T TakeFromGlobalPool(int thisThreadID) { RecordTakeFromGlobalPool(thisThreadID); return globalPool.Take(); } struct Entry { public int threadID; public T value; } struct PendingEntry { public int threadID; public int returnCount; } class GlobalPool { Stack items; int maxCount; public GlobalPool(int maxCount) { this.items = new Stack (); this.maxCount = maxCount; } public int MaxCount { get { return maxCount; } set { lock (ThisLock) { while (items.Count > value) { items.Pop(); } maxCount = value; } } } object ThisLock { get { return this; } } public void DecrementMaxCount() { lock (ThisLock) { if (items.Count == maxCount) { items.Pop(); } maxCount--; } } public T Take() { if (this.items.Count > 0) { lock (ThisLock) { if (this.items.Count > 0) { return this.items.Pop(); } } } return null; } public bool Return(T value) { if (this.items.Count < this.MaxCount) { lock (ThisLock) { if (this.items.Count < this.MaxCount) { this.items.Push(value); return true; } } } return false; } public void Clear() { lock (ThisLock) { this.items.Clear(); } } } } static class SynchronizedPoolHelper { static public readonly int ProcessorCount = GetProcessorCount(); /// /// Critical - Asserts in order to get the processor count from the environment /// Safe - this data isn't actually protected so it's ok to leak /// [SecurityCritical, SecurityTreatAsSafe] [EnvironmentPermission(SecurityAction.Assert, Read = "NUMBER_OF_PROCESSORS")] static int GetProcessorCount() { return Environment.ProcessorCount; } } } // File provided for Reference Use Only by Microsoft Corporation (c) 2007. // Copyright (c) Microsoft Corporation. All rights reserved.
Link Menu

This book is available now!
Buy at Amazon US or
Buy at Amazon UK
- EntityFunctions.cs
- ComponentChangedEvent.cs
- DocumentViewerConstants.cs
- RecordManager.cs
- WebRequestModuleElementCollection.cs
- CompositeFontInfo.cs
- HttpConfigurationSystem.cs
- HttpVersion.cs
- IDReferencePropertyAttribute.cs
- HScrollBar.cs
- DbDeleteCommandTree.cs
- IdentityModelDictionary.cs
- SingleAnimationUsingKeyFrames.cs
- HasCopySemanticsAttribute.cs
- VarInfo.cs
- PagesChangedEventArgs.cs
- TextClipboardData.cs
- Int32CollectionValueSerializer.cs
- SynchronizedDispatch.cs
- _NegoState.cs
- HasCopySemanticsAttribute.cs
- WebControl.cs
- PropertyMappingExceptionEventArgs.cs
- mda.cs
- Type.cs
- KeyGesture.cs
- Models.cs
- ButtonAutomationPeer.cs
- URLAttribute.cs
- WebPartZoneCollection.cs
- DataBoundControl.cs
- httpapplicationstate.cs
- EnumerableRowCollectionExtensions.cs
- RootBrowserWindowProxy.cs
- XmlCountingReader.cs
- TypefaceCollection.cs
- KeyedByTypeCollection.cs
- XmlAnyAttributeAttribute.cs
- Number.cs
- PropertyConverter.cs
- XmlWrappingReader.cs
- AdPostCacheSubstitution.cs
- BaseComponentEditor.cs
- SoapDocumentServiceAttribute.cs
- DataRow.cs
- SafeFileMappingHandle.cs
- CompilationAssemblyInstallComponent.cs
- SQLBinary.cs
- SmiContextFactory.cs
- SqlConnectionFactory.cs
- _IPv4Address.cs
- ConfigurationValues.cs
- ModuleElement.cs
- ReliableChannelFactory.cs
- ExpandSegment.cs
- TextElement.cs
- Enumerable.cs
- ControllableStoryboardAction.cs
- ProxyHelper.cs
- AQNBuilder.cs
- CharEnumerator.cs
- GeometryHitTestParameters.cs
- CommandBindingCollection.cs
- SiteMapDataSourceView.cs
- TextRenderer.cs
- TextSerializer.cs
- ClipboardProcessor.cs
- NegotiateStream.cs
- IntegerValidator.cs
- XsdBuildProvider.cs
- ListViewContainer.cs
- ConnectionStringsExpressionBuilder.cs
- IProvider.cs
- ProcessModule.cs
- ManagementObjectCollection.cs
- ThicknessKeyFrameCollection.cs
- SafeLibraryHandle.cs
- XamlStream.cs
- XdrBuilder.cs
- ScriptingJsonSerializationSection.cs
- QilStrConcat.cs
- ScaleTransform3D.cs
- BaseTreeIterator.cs
- SearchForVirtualItemEventArgs.cs
- HashHelpers.cs
- CompilerInfo.cs
- ScalarRestriction.cs
- XmlDataSource.cs
- StreamGeometryContext.cs
- GatewayDefinition.cs
- ExpressionBinding.cs
- ClockController.cs
- _SslSessionsCache.cs
- DataBoundLiteralControl.cs
- SplayTreeNode.cs
- DataRecordInfo.cs
- StrongName.cs
- ContentElementAutomationPeer.cs
- SessionPageStateSection.cs
- ProcessHostConfigUtils.cs