Thread.cs source code in C# .NET

Source code for the .NET framework in C#

                        

Code:

/ 4.0 / 4.0 / untmp / DEVDIV_TFS / Dev10 / Releases / RTMRel / ndp / clr / src / BCL / System / Threading / Thread.cs / 1305376 / Thread.cs

                            // ==++== 
//
//   Copyright (c) Microsoft Corporation.  All rights reserved.
//
// ==--== 
//
// [....] 
/*============================================================================== 
**
** Class: Thread 
**
**
** Purpose: Class for creating and managing a thread.
** 
**
=============================================================================*/ 
 
namespace System.Threading {
    using System.Threading; 
    using System.Runtime;
    using System.Runtime.InteropServices;
#if FEATURE_REMOTING
    using System.Runtime.Remoting.Contexts; 
#endif
    using System.Runtime.Remoting.Messaging; 
    using System; 
    using System.Diagnostics;
    using System.Security.Permissions; 
    using System.Security.Principal;
    using System.Globalization;
    using System.Collections.Generic;
    using System.Runtime.Serialization; 
    using System.Runtime.CompilerServices;
    using System.Runtime.ConstrainedExecution; 
    using System.Security; 
    using System.Runtime.Versioning;
    using System.Diagnostics.Contracts; 

    internal delegate Object InternalCrossContextDelegate(Object[] args);

    internal class ThreadHelper 
    {
        Delegate _start; 
        Object _startArg = null; 
        ExecutionContext _executionContext = null;
        internal ThreadHelper(Delegate start) 
        {
            _start = start;
        }
 
        internal void SetExecutionContextHelper(ExecutionContext ec)
        { 
            _executionContext = ec; 
        }
        static internal ContextCallback _ccb = new ContextCallback(ThreadStart_Context); 
        static internal void ThreadStart_Context(Object state)
        {
            ThreadHelper t = (ThreadHelper)state;
            if (t._start is ThreadStart) 
            {
                ((ThreadStart)t._start)(); 
            } 
            else
            { 
                ((ParameterizedThreadStart)t._start)(t._startArg);
            }
        }
 
        // call back helper
        [System.Security.SecurityCritical]  // auto-generated 
        internal void ThreadStart(object obj) 
        {
            _startArg = obj; 
            if (_executionContext != null)
            {
                ExecutionContext.Run(_executionContext, _ccb, (Object)this);
            } 
            else
            { 
                ((ParameterizedThreadStart)_start)(obj); 
            }
        } 

        // call back helper
        [System.Security.SecurityCritical]  // auto-generated
        internal void ThreadStart() 
        {
            if (_executionContext != null) 
            { 
                ExecutionContext.Run(_executionContext, _ccb, (Object)this);
            } 
            else
            {
                ((ThreadStart)_start)();
            } 
        }
    } 
 
    internal struct ThreadHandle
    { 
        private IntPtr m_ptr;

        internal ThreadHandle(IntPtr pThread)
        { 
            m_ptr = pThread;
        } 
    } 

    // deliberately not [serializable] 
    [ClassInterface(ClassInterfaceType.None)]
    [ComDefaultInterface(typeof(_Thread))]
[System.Runtime.InteropServices.ComVisible(true)]
    public sealed class Thread : CriticalFinalizerObject, _Thread 
    {
        /*========================================================================= 
        ** Data accessed from managed code that needs to be defined in 
        ** ThreadBaseObject to maintain alignment between the two classes.
        ** DON'T CHANGE THESE UNLESS YOU MODIFY ThreadBaseObject in vm\object.h 
        =========================================================================*/
#if FEATURE_REMOTING
        private Context         m_Context;
#endif 
        private ExecutionContext m_ExecutionContext;    // this call context follows the logical thread
 
        private String          m_Name; 
        private Delegate        m_Delegate;             // Delegate
 
#if FEATURE_LEAK_CULTURE_INFO
        private CultureInfo     m_CurrentCulture;
        private CultureInfo     m_CurrentUICulture;
#endif 
#if IO_CANCELLATION_ENABLED
        internal List m_CancellationSignals;  // IO Cancellation stack 
#endif 
        private Object          m_ThreadStartArg;
 
        /*=========================================================================
        ** The base implementation of Thread is all native.  The following fields
        ** should never be used in the C# code.  They are here to define the proper
        ** space so the thread object may be allocated.  DON'T CHANGE THESE UNLESS 
        ** YOU MODIFY ThreadBaseObject in vm\object.h
        =========================================================================*/ 
#pragma warning disable 169 
#pragma warning disable 414  // These fields are not used from managed.
        // IntPtrs need to be together, and before ints, because IntPtrs are 64-bit 
        //  fields on 64-bit platforms, where they will be sorted together.

        private IntPtr  DONT_USE_InternalThread;        // Pointer
        private int     m_Priority;                     // INT32 
        private int     m_ManagedThreadId;              // INT32
 
#pragma warning restore 414 
#pragma warning restore 169
 
        /*=========================================================================
        ** This manager is responsible for storing the global data that is
        ** shared amongst all the thread local stores.
        =========================================================================*/ 
        static private LocalDataStoreMgr s_LocalDataStoreMgr;
 
        /*========================================================================== 
        ** Thread-local data store
        =========================================================================*/ 
        [ThreadStatic]
        static private LocalDataStoreHolder s_LocalDataStore;

        // Has to be in [....] with THREAD_STATICS_BUCKET_SIZE in vm/threads.cpp 
        private const int STATICS_BUCKET_SIZE = 32;
 
        // Do not move! Order of above fields needs to be preserved for alignment 
        // with native code
        // See code:#threadCultureInfo 
#if !FEATURE_LEAK_CULTURE_INFO
        [ThreadStatic]
        private static CultureInfo     m_CurrentCulture;
        [ThreadStatic] 
        private static CultureInfo     m_CurrentUICulture;
#endif 
 
#if FEATURE_CORECLR
        // Adding an empty default ctor for annotation purposes 
        internal Thread(){}
#endif // FEATURE_CORECLR
        /*=========================================================================
        ** Creates a new Thread object which will begin execution at 
        ** start.ThreadStart on a new thread when the Start method is called.
        ** 
        ** Exceptions: ArgumentNullException if start == null. 
        =========================================================================*/
        [System.Security.SecuritySafeCritical]  // auto-generated 
        public Thread(ThreadStart start) {
            if (start == null) {
                throw new ArgumentNullException("start");
            } 
            Contract.EndContractBlock();
            SetStartHelper((Delegate)start,0);  //0 will setup Thread with default stackSize 
        } 

        [System.Security.SecuritySafeCritical]  // auto-generated 
        public Thread(ThreadStart start, int maxStackSize) {
            if (start == null) {
                throw new ArgumentNullException("start");
            } 
            if (0 > maxStackSize)
                throw new ArgumentOutOfRangeException("maxStackSize",Environment.GetResourceString("ArgumentOutOfRange_NeedNonNegNum")); 
            Contract.EndContractBlock(); 
            SetStartHelper((Delegate)start, maxStackSize);
        } 
        [System.Security.SecuritySafeCritical]  // auto-generated
        public Thread(ParameterizedThreadStart start) {
            if (start == null) {
                throw new ArgumentNullException("start"); 
            }
            Contract.EndContractBlock(); 
            SetStartHelper((Delegate)start, 0); 
        }
 
        [System.Security.SecuritySafeCritical]  // auto-generated
        public Thread(ParameterizedThreadStart start, int maxStackSize) {
            if (start == null) {
                throw new ArgumentNullException("start"); 
            }
            if (0 > maxStackSize) 
                throw new ArgumentOutOfRangeException("maxStackSize",Environment.GetResourceString("ArgumentOutOfRange_NeedNonNegNum")); 
            Contract.EndContractBlock();
            SetStartHelper((Delegate)start, maxStackSize); 
        }

        [ComVisible(false)]
        public override int GetHashCode() 
        {
            return m_ManagedThreadId; 
        } 

        extern public int ManagedThreadId 
        {
            [ResourceExposure(ResourceScope.None)]
            [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
            [MethodImplAttribute(MethodImplOptions.InternalCall)] 
            [System.Security.SecuritySafeCritical]  // auto-generated
            get; 
        } 

        // Returns handle for interop with EE. The handle is guaranteed to be non-null. 
        internal unsafe ThreadHandle GetNativeHandle()
        {
            IntPtr thread = DONT_USE_InternalThread;
 
            // This should never happen under normal circumstances. m_assembly is always assigned before it is handed out to the user.
            // There are ways how to create an unitialized objects through remoting, etc. Avoid AVing in the EE by throwing a nice 
            // exception here. 
            if (thread.IsNull())
                throw new ArgumentException(null, Environment.GetResourceString("Argument_InvalidHandle")); 

            return new ThreadHandle(thread);
        }
 

        /*========================================================================== 
        ** Spawns off a new thread which will begin executing at the ThreadStart 
        ** method on the IThreadable interface passed in the constructor. Once the
        ** thread is dead, it cannot be restarted with another call to Start. 
        **
        ** Exceptions: ThreadStateException if the thread has already been started.
        =========================================================================*/
        [System.Security.SecuritySafeCritical]  // auto-generated 
        [HostProtection(Synchronization=true,ExternalThreading=true)]
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // Methods containing StackCrawlMark local var has to be marked non-inlineable 
        public void Start() 
        {
            StackCrawlMark stackMark = StackCrawlMark.LookForMyCaller; 
            Start(ref stackMark);
        }

        [System.Security.SecuritySafeCritical]  // auto-generated 
        [HostProtection(Synchronization=true,ExternalThreading=true)]
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // Methods containing StackCrawlMark local var has to be marked non-inlineable 
        public void Start(object parameter) 
        {
            //In the case of a null delegate (second call to start on same thread) 
            //    StartInternal method will take care of the error reporting
            if(m_Delegate is ThreadStart)
            {
                //We expect the thread to be setup with a ParameterizedThreadStart 
                //    if this constructor is called.
                //If we got here then that wasn't the case 
                throw new InvalidOperationException(Environment.GetResourceString("InvalidOperation_ThreadWrongThreadStart")); 
            }
            m_ThreadStartArg = parameter; 
            StackCrawlMark stackMark = StackCrawlMark.LookForMyCaller;
            Start(ref stackMark);
        }
 
        [System.Security.SecuritySafeCritical]
        private void Start(ref StackCrawlMark stackMark) 
        { 
#if FEATURE_COMINTEROP_APARTMENT_SUPPORT
            // Eagerly initialize the COM Apartment state of the thread if we're allowed to. 
            StartupSetApartmentStateInternal();
#endif // FEATURE_COMINTEROP_APARTMENT_SUPPORT

            // Attach current thread's security principal object to the new 
            // thread. Be careful not to bind the current thread to a principal
            // if it's not already bound. 
            if (m_Delegate != null) 
            {
                // If we reach here with a null delegate, something is broken. But we'll let the StartInternal method take care of 
                // reporting an error. Just make sure we dont try to dereference a null delegate.
                ThreadHelper t = (ThreadHelper)(m_Delegate.Target);
                ExecutionContext ec = ExecutionContext.Capture(
                    ref stackMark, 
                    ExecutionContext.CaptureOptions.IgnoreSyncCtx);
                t.SetExecutionContextHelper(ec); 
            } 
            IPrincipal principal = (IPrincipal)CallContext.Principal;
            StartInternal(principal, ref stackMark); 
        }


        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)] 
        internal ExecutionContext GetExecutionContextNoCreate()
        { 
            return m_ExecutionContext; 
        }
 


        public  ExecutionContext ExecutionContext
        { 
            [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
            [System.Security.SecuritySafeCritical]  // auto-generated 
            get 
            {
                if (m_ExecutionContext == null && this == Thread.CurrentThread) 
                {
                    m_ExecutionContext = new ExecutionContext();
                    m_ExecutionContext.Thread = this;
                } 
                return m_ExecutionContext;
            } 
        } 

        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)] 
        internal void SetExecutionContext(ExecutionContext value) {
            m_ExecutionContext = value;
            if (value != null)
                m_ExecutionContext.Thread = this; 
        }
 
 

        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        private extern void StartInternal(IPrincipal principal, ref StackCrawlMark stackMark);
#if FEATURE_COMPRESSEDSTACK 
        /// 
        [System.Security.SecurityCritical]  // auto-generated_required 
        [DynamicSecurityMethodAttribute()] 
        [Obsolete("Thread.SetCompressedStack is no longer supported. Please use the System.Threading.CompressedStack class")]
        public void SetCompressedStack( CompressedStack stack ) 
        {
            throw new InvalidOperationException(Environment.GetResourceString("InvalidOperation_ThreadAPIsNotSupported"));
        }
 
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall), ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)] 
        internal extern IntPtr SetAppDomainStack( SafeCompressedStackHandle csHandle);
 
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall), ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
        internal extern void RestoreAppDomainStack( IntPtr appDomainStack); 

 
        ///  
        [System.Security.SecurityCritical]  // auto-generated_required
        [Obsolete("Thread.GetCompressedStack is no longer supported. Please use the System.Threading.CompressedStack class")] 
        public CompressedStack GetCompressedStack()
        {
            throw new InvalidOperationException(Environment.GetResourceString("InvalidOperation_ThreadAPIsNotSupported"));
        } 
#endif // #if FEATURE_COMPRESSEDSTACK
 
 
        // Helper method to get a logical thread ID for StringBuilder (for
        // correctness) and for FileStream's async code path (for perf, to 
        // avoid creating a Thread instance).
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        #if !FEATURE_CORECLR
        [System.Runtime.ForceTokenStabilization] 
        #endif //!FEATURE_CORECLR 
        internal extern static IntPtr InternalGetCurrentThread();
 
#if IO_CANCELLATION_ENABLED
        // Internal method to get the OS thread handle for this thread.
        internal extern IntPtr Handle {
            [ResourceExposure(ResourceScope.AppDomain)] 
            [MethodImpl(MethodImplOptions.InternalCall)]
            get; 
        } 
#endif
        /*========================================================================== 
        ** Raises a ThreadAbortException in the thread, which usually
        ** results in the thread's death. The ThreadAbortException is a special
        ** exception that is not catchable. The finally clauses of all try
        ** statements will be executed before the thread dies. This includes the 
        ** finally that a thread might be executing at the moment the Abort is raised.
        ** The thread is not stopped immediately--you must Join on the 
        ** thread to guarantee it has stopped. 
        ** It is possible for a thread to do an unbounded amount of computation in
        ** the finally's and thus indefinitely delay the threads death. 
        ** If Abort() is called on a thread that has not been started, the thread
        ** will abort when Start() is called.
        ** If Abort is called twice on the same thread, a DuplicateThreadAbort
        ** exception is thrown. 
        =========================================================================*/
 
        [System.Security.SecuritySafeCritical]  // auto-generated 
        [SecurityPermissionAttribute(SecurityAction.Demand, ControlThread=true)]
        public void Abort(Object stateInfo) 
        {
            // If two aborts come at the same time, it is possible that the state info
            //  gets set by one, and the actual abort gets delivered by another. But this
            //  is not distinguishable by an application. 
            // The accessor helper will only set the value if it isn't already set,
            //  and that particular bit of native code can test much faster than this 
            //  code could, because testing might cause a cross-appdomain marshalling. 
            AbortReason = stateInfo;
 
            // Note: we demand ControlThread permission, then call AbortInternal directly
            // rather than delegating to the Abort() function below. We do this to ensure
            // that only callers with ControlThread are allowed to change the AbortReason
            // of the thread. We call AbortInternal directly to avoid demanding the same 
            // permission twice.
            AbortInternal(); 
        } 

        [System.Security.SecuritySafeCritical]  // auto-generated 
        [SecurityPermissionAttribute(SecurityAction.Demand, ControlThread=true)]
        public void Abort() { AbortInternal(); }

        // Internal helper (since we can't place security demands on 
        // ecalls/fcalls).
        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        private extern void AbortInternal(); 

        /*=========================================================================
        ** Resets a thread abort.
        ** Should be called by trusted code only 
          =========================================================================*/
        [System.Security.SecuritySafeCritical]  // auto-generated 
        [SecurityPermissionAttribute(SecurityAction.Demand, ControlThread=true)] 
        public static void ResetAbort()
        { 
            Thread thread = Thread.CurrentThread;
            if ((thread.ThreadState & ThreadState.AbortRequested) == 0)
                throw new ThreadStateException(Environment.GetResourceString("ThreadState_NoAbortRequested"));
            thread.ResetAbortNative(); 
            thread.ClearAbortReason();
        } 
 
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        private extern void ResetAbortNative();

        /*========================================================================== 
        ** Suspends the thread. If the thread is already suspended, this call has
        ** no effect. 
        ** 
        ** Exceptions: ThreadStateException if the thread has not been started or
        **             it is dead. 
        =========================================================================*/
        [System.Security.SecuritySafeCritical]  // auto-generated
        [Obsolete("Thread.Suspend has been deprecated.  Please use other classes in System.Threading, such as Monitor, Mutex, Event, and Semaphore, to synchronize Threads or protect resources.  http://go.microsoft.com/fwlink/?linkid=14202", false)][SecurityPermission(SecurityAction.Demand, ControlThread=true)]
        [SecurityPermission(SecurityAction.Demand, ControlThread=true)] 
        public void Suspend() { SuspendInternal(); }
 
        // Internal helper (since we can't place security demands on 
        // ecalls/fcalls).
        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        private extern void SuspendInternal();
 
        /*=========================================================================
        ** Resumes a thread that has been suspended. 
        ** 
        ** Exceptions: ThreadStateException if the thread has not been started or
        **             it is dead or it isn't in the suspended state. 
        =========================================================================*/
        [System.Security.SecuritySafeCritical]  // auto-generated
        [Obsolete("Thread.Resume has been deprecated.  Please use other classes in System.Threading, such as Monitor, Mutex, Event, and Semaphore, to synchronize Threads or protect resources.  http://go.microsoft.com/fwlink/?linkid=14202", false)]
        [SecurityPermission(SecurityAction.Demand, ControlThread=true)] 
        public void Resume() { ResumeInternal(); }
 
        // Internal helper (since we can't place security demands on 
        // ecalls/fcalls).
        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        private extern void ResumeInternal();
 
        /*=========================================================================
        ** Interrupts a thread that is inside a Wait(), Sleep() or Join().  If that 
        ** thread is not currently blocked in that manner, it will be interrupted 
        ** when it next begins to block.
        =========================================================================*/ 
        [System.Security.SecuritySafeCritical]  // auto-generated
        [SecurityPermission(SecurityAction.Demand, ControlThread=true)]
        public void Interrupt() { InterruptInternal(); }
 
        // Internal helper (since we can't place security demands on
        // ecalls/fcalls). 
        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        private extern void InterruptInternal();

        /*=========================================================================
        ** Returns the priority of the thread. 
        **
        ** Exceptions: ThreadStateException if the thread is dead. 
        =========================================================================*/ 

        public ThreadPriority Priority { 
            [System.Security.SecuritySafeCritical]  // auto-generated
            get { return (ThreadPriority)GetPriorityNative(); }
            [System.Security.SecuritySafeCritical]  // auto-generated
            [HostProtection(SelfAffectingThreading=true)] 
            set { SetPriorityNative((int)value); }
        } 
        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        private extern int GetPriorityNative();
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        private extern void SetPriorityNative(int priority);
 
        /*========================================================================== 
        ** Returns true if the thread has been started and is not dead.
        =========================================================================*/ 
        public bool IsAlive {
            [System.Security.SecuritySafeCritical]  // auto-generated
            get { return IsAliveNative(); }
        } 
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        private extern bool IsAliveNative();
 
        /*=========================================================================
        ** Returns true if the thread is a threadpool thread.
        =========================================================================*/
        public bool IsThreadPoolThread { 
            [System.Security.SecuritySafeCritical]  // auto-generated
            get { return IsThreadpoolThreadNative();  } 
        } 

        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        private extern bool IsThreadpoolThreadNative();
 
        /*==========================================================================
        ** Waits for the thread to die. 
        ** 
        ** Exceptions: ThreadInterruptedException if the thread is interrupted while waiting.
        **             ThreadStateException if the thread has not been started yet. 
        =========================================================================*/
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        [HostProtection(Synchronization=true, ExternalThreading=true)]
        private extern void JoinInternal(); 
 
        [System.Security.SecuritySafeCritical]  // auto-generated
        [HostProtection(Synchronization=true, ExternalThreading=true)] 
        public void Join()
        {
            JoinInternal();
        } 

        /*========================================================================== 
        ** Waits for the thread to die or for timeout milliseconds to elapse. 
        ** Returns true if the thread died, or false if the wait timed out. If
        ** Timeout.Infinite is given as the parameter, no timeout will occur. 
        **
        ** Exceptions: ArgumentException if timeout < 0.
        **             ThreadInterruptedException if the thread is interrupted while waiting.
        **             ThreadStateException if the thread has not been started yet. 
        =========================================================================*/
        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        [HostProtection(Synchronization=true, ExternalThreading=true)] 
        private extern bool JoinInternal(int millisecondsTimeout);

        [System.Security.SecuritySafeCritical]  // auto-generated
        [HostProtection(Synchronization=true, ExternalThreading=true)] 
        public bool Join(int millisecondsTimeout)
        { 
            return JoinInternal(millisecondsTimeout); 
        }
 
        [HostProtection(Synchronization=true, ExternalThreading=true)]
        public bool Join(TimeSpan timeout)
        {
            long tm = (long)timeout.TotalMilliseconds; 
            if (tm < -1 || tm > (long) Int32.MaxValue)
                throw new ArgumentOutOfRangeException("timeout", Environment.GetResourceString("ArgumentOutOfRange_NeedNonNegOrNegative1")); 
 
            return Join((int)tm);
        } 

        /*=========================================================================
        ** Suspends the current thread for timeout milliseconds. If timeout == 0,
        ** forces the thread to give up the remainer of its timeslice.  If timeout 
        ** == Timeout.Infinite, no timeout will occur.
        ** 
        ** Exceptions: ArgumentException if timeout < 0. 
        **             ThreadInterruptedException if the thread is interrupted while sleeping.
        =========================================================================*/ 
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        private static extern void SleepInternal(int millisecondsTimeout); 

        [System.Security.SecuritySafeCritical]  // auto-generated 
        public static void Sleep(int millisecondsTimeout) 
        {
            SleepInternal(millisecondsTimeout); 
        }

        public static void Sleep(TimeSpan timeout)
        { 
            long tm = (long)timeout.TotalMilliseconds;
            if (tm < -1 || tm > (long) Int32.MaxValue) 
                throw new ArgumentOutOfRangeException("timeout", Environment.GetResourceString("ArgumentOutOfRange_NeedNonNegOrNegative1")); 
            Sleep((int)tm);
        } 


        /* wait for a length of time proportial to 'iterations'.  Each iteration is should
           only take a few machine instructions.  Calling this API is preferable to coding 
           a explict busy loop because the hardware can be informed that it is busy waiting. */
 
        [System.Security.SecurityCritical]  // auto-generated 
        [MethodImplAttribute(MethodImplOptions.InternalCall),
         HostProtection(Synchronization=true,ExternalThreading=true), 
         ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success),
         ResourceExposure(ResourceScope.None)]
        private static extern void SpinWaitInternal(int iterations);
 
        [System.Security.SecuritySafeCritical]  // auto-generated
        [HostProtection(Synchronization=true,ExternalThreading=true), 
         ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)] 
        public static void SpinWait(int iterations)
        { 
            SpinWaitInternal(iterations);
        }

        [System.Security.SecurityCritical]  // auto-generated 
        [MethodImplAttribute(MethodImplOptions.InternalCall),
         HostProtection(Synchronization = true, ExternalThreading = true), 
         ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success), 
         ResourceExposure(ResourceScope.None)]
        private static extern bool YieldInternal(); 

        [System.Security.SecuritySafeCritical]  // auto-generated
        [HostProtection(Synchronization = true, ExternalThreading = true),
         ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)] 
        public static bool Yield()
        { 
            return YieldInternal(); 
        }
 
        public static Thread CurrentThread {
            [System.Security.SecuritySafeCritical]  // auto-generated
            [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
#if !FEATURE_CORECLR 
            [TargetedPatchingOptOut("Performance critical to inline across NGen image boundaries")]
#endif 
            get { 
                Contract.Ensures(Contract.Result() != null);
                return GetCurrentThreadNative(); 
            }
        }
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall), ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
        private static extern Thread GetCurrentThreadNative(); 
 
        [System.Security.SecurityCritical]  // auto-generated
        private void SetStartHelper(Delegate start, int maxStackSize) 
        {
#if FEATURE_CORECLR
            // We only support default stacks in CoreCLR
            Contract.Assert(maxStackSize == 0); 
#else
            // Only fully-trusted code is allowed to create "large" stacks.  Partial-trust falls back to 
            // the default stack size. 
            ulong defaultStackSize = GetProcessDefaultStackSize();
            if ((ulong)(uint)maxStackSize > defaultStackSize) 
            {
                try
                {
                    SecurityPermission.Demand(PermissionType.FullTrust); 
                }
                catch (SecurityException) 
                { 
                    maxStackSize = (int)Math.Min(defaultStackSize, (ulong)(uint)int.MaxValue);
                } 
            }
#endif

            ThreadHelper threadStartCallBack = new ThreadHelper(start); 
            if(start is ThreadStart)
            { 
                SetStart(new ThreadStart(threadStartCallBack.ThreadStart), maxStackSize); 
            }
            else 
            {
                SetStart(new ParameterizedThreadStart(threadStartCallBack.ThreadStart), maxStackSize);
            }
        } 

        [SecurityCritical] 
        [ResourceExposure(ResourceScope.None)] 
        [DllImport(JitHelpers.QCall, CharSet = CharSet.Unicode)]
        [SuppressUnmanagedCodeSecurity] 
        private static extern ulong GetProcessDefaultStackSize();

        /*==========================================================================
        ** PRIVATE Sets the IThreadable interface for the thread. Assumes that 
        ** start != null.
        =========================================================================*/ 
        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        private extern void SetStart(Delegate start, int maxStackSize);

        /*=========================================================================
        ** Clean up the thread when it goes away. 
        =========================================================================*/
        [System.Security.SecuritySafeCritical]  // auto-generated 
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)] 
        ~Thread()
        { 
            // Delegate to the unmanaged portion.
            InternalFinalize();
        }
 
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)] 
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        private extern void InternalFinalize(); 

#if FEATURE_COMINTEROP
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)] 
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        public extern void DisableComObjectEagerCleanup(); 
#endif //FEATURE_COMINTEROP
 
        /*=========================================================================
        ** Return whether or not this thread is a background thread.  Background
        ** threads do not affect when the Execution Engine shuts down.
        ** 
        ** Exceptions: ThreadStateException if the thread is dead.
        =========================================================================*/ 
        public bool IsBackground { 
            [System.Security.SecuritySafeCritical]  // auto-generated
            get { return IsBackgroundNative(); } 
            [System.Security.SecuritySafeCritical]  // auto-generated
            [HostProtection(SelfAffectingThreading=true)]
            set { SetBackgroundNative(value); }
        } 
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        private extern bool IsBackgroundNative();
        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        private extern void SetBackgroundNative(bool isBackground);
 

        /*========================================================================= 
        ** Return the thread state as a consistent set of bits.  This is more 
        ** general then IsAlive or IsBackground.
        =========================================================================*/ 
        public ThreadState ThreadState {
            [System.Security.SecuritySafeCritical]  // auto-generated
            get { return (ThreadState)GetThreadStateNative(); }
        } 

        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        private extern int GetThreadStateNative(); 

#if FEATURE_COMINTEROP_APARTMENT_SUPPORT
        /*==========================================================================
        ** An unstarted thread can be marked to indicate that it will host a 
        ** single-threaded or multi-threaded apartment.
        ** 
        ** Exceptions: ArgumentException if state is not a valid apartment state 
        **             (ApartmentSTA or ApartmentMTA).
        =========================================================================*/ 
        [Obsolete("The ApartmentState property has been deprecated.  Use GetApartmentState, SetApartmentState or TrySetApartmentState instead.", false)]
        public ApartmentState ApartmentState
        {
            [System.Security.SecuritySafeCritical]  // auto-generated 
            get
            { 
                return (ApartmentState)GetApartmentStateNative(); 
            }
 
            [System.Security.SecuritySafeCritical]  // auto-generated
            [HostProtection(Synchronization=true, SelfAffectingThreading=true)]
            set
            { 
                SetApartmentStateNative((int)value, true);
            } 
        } 

        [System.Security.SecuritySafeCritical]  // auto-generated 
        public ApartmentState GetApartmentState()
        {
            return (ApartmentState)GetApartmentStateNative();
        } 

        [System.Security.SecuritySafeCritical]  // auto-generated 
        [HostProtection(Synchronization=true, SelfAffectingThreading=true)] 
        public bool TrySetApartmentState(ApartmentState state)
        { 
            return SetApartmentStateHelper(state, false);
        }

        [System.Security.SecuritySafeCritical]  // auto-generated 
        [HostProtection(Synchronization=true, SelfAffectingThreading=true)]
        public void SetApartmentState(ApartmentState state) 
        { 
            bool result = SetApartmentStateHelper(state, true);
            if (!result) 
                throw new InvalidOperationException(Environment.GetResourceString("InvalidOperation_ApartmentStateSwitchFailed"));
        }

        [System.Security.SecurityCritical]  // auto-generated 
        private bool SetApartmentStateHelper(ApartmentState state, bool fireMDAOnMismatch)
        { 
            ApartmentState retState = (ApartmentState)SetApartmentStateNative((int)state, fireMDAOnMismatch); 

            // Special case where we pass in Unknown and get back MTA. 
            //  Once we CoUninitialize the thread, the OS will still
            //  report the thread as implicitly in the MTA if any
            //  other thread in the process is CoInitialized.
            if ((state == System.Threading.ApartmentState.Unknown) && (retState == System.Threading.ApartmentState.MTA)) 
                return true;
 
            if (retState != state) 
                return false;
 
            return true;
        }

        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        private extern int GetApartmentStateNative(); 
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        private extern int SetApartmentStateNative(int state, bool fireMDAOnMismatch);
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        private extern void StartupSetApartmentStateInternal(); 
#endif // FEATURE_COMINTEROP_APARTMENT_SUPPORT 

        /*========================================================================= 
        ** Allocates an un-named data slot. The slot is allocated on ALL the
        ** threads.
        =========================================================================*/
        [HostProtection(SharedState=true, ExternalThreading=true)] 
        public static LocalDataStoreSlot AllocateDataSlot()
        { 
            return LocalDataStoreManager.AllocateDataSlot(); 
        }
 
        /*==========================================================================
        ** Allocates a named data slot. The slot is allocated on ALL the
        ** threads.  Named data slots are "public" and can be manipulated by
        ** anyone. 
        =========================================================================*/
        [HostProtection(SharedState=true, ExternalThreading=true)] 
        public static LocalDataStoreSlot AllocateNamedDataSlot(String name) 
        {
            return LocalDataStoreManager.AllocateNamedDataSlot(name); 
        }

        /*==========================================================================
        ** Looks up a named data slot. If the name has not been used, a new slot is 
        ** allocated.  Named data slots are "public" and can be manipulated by
        ** anyone. 
        =========================================================================*/ 
        [HostProtection(SharedState=true, ExternalThreading=true)]
        public static LocalDataStoreSlot GetNamedDataSlot(String name) 
        {
            return LocalDataStoreManager.GetNamedDataSlot(name);
        }
 
        /*=========================================================================
        ** Frees a named data slot. The slot is allocated on ALL the 
        ** threads.  Named data slots are "public" and can be manipulated by 
        ** anyone.
        =========================================================================*/ 
        [HostProtection(SharedState=true, ExternalThreading=true)]
        public static void FreeNamedDataSlot(String name)
        {
            LocalDataStoreManager.FreeNamedDataSlot(name); 
        }
 
        /*========================================================================== 
        ** Retrieves the value from the specified slot on the current thread, for that thread's current domain.
        =========================================================================*/ 
        [HostProtection(SharedState=true, ExternalThreading=true)]
        [ResourceExposure(ResourceScope.AppDomain)]
        public static Object GetData(LocalDataStoreSlot slot)
        { 
            LocalDataStoreHolder dls = s_LocalDataStore;
            if (dls == null) 
            { 
                // Make sure to validate the slot even if we take the quick path
                LocalDataStoreManager.ValidateSlot(slot); 
                return null;
            }

            return dls.Store.GetData(slot); 
        }
 
        /*========================================================================= 
        ** Sets the data in the specified slot on the currently running thread, for that thread's current domain.
        =========================================================================*/ 
        [HostProtection(SharedState=true, ExternalThreading=true)]
        [ResourceExposure(ResourceScope.AppDomain)]
        public static void SetData(LocalDataStoreSlot slot, Object data)
        { 
            LocalDataStoreHolder dls = s_LocalDataStore;
 
            // Create new DLS if one hasn't been created for this domain for this thread 
            if (dls == null) {
                dls = LocalDataStoreManager.CreateLocalDataStore(); 
                s_LocalDataStore = dls;
            }

            dls.Store.SetData(slot, data); 
        }
 
 
        // #threadCultureInfo
        // 
        // Background:
        // In the desktop runtime, we allow a thread's cultures to travel with the thread
        // across AppDomain boundaries. Furthermore we update the native thread with the
        // culture of the managed thread. Because of security concerns and potential SxS 
        // effects, in Silverlight we are making the changes listed below.
        // 
        // Silverlight Changes: 
        // - thread instance member cultures (CurrentCulture and CurrentUICulture)
        //   confined within AppDomains 
        // - changes to these properties don't affect the underlying native thread
        //
        // Ifdef:
        // FEATURE_LEAK_CULTURE_INFO      : CultureInfos can leak across AppDomains, not 
        //                                  enabled in Silverlight
        // 
        // Implementation notes: 
        // In Silverlight, culture members thread static (per Thread, per AppDomain).
        // 
        // Quirks:
        // An interesting side-effect of isolating cultures within an AppDomain is that we
        // now need to special case resource lookup for mscorlib, which transitions to the
        // default domain to lookup resources. See Environment.cs for more details. 
        //
#if FEATURE_LEAK_CULTURE_INFO 
        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        static extern private bool nativeGetSafeCulture(Thread t, int appDomainId, bool isUI, ref CultureInfo safeCulture);
#endif // FEATURE_LEAK_CULTURE_INFO

        // As the culture can be customized object then we cannot hold any 
        // reference to it before we check if it is safe because the app domain
        // owning this customized culture may get unloaded while executing this 
        // code. To achieve that we have to do the check using nativeGetSafeCulture 
        // as the thread cannot get interrupted during the FCALL.
        // If the culture is safe (not customized or created in current app domain) 
        // then the FCALL will return a reference to that culture otherwise the
        // FCALL will return failure. In case of failure we'll return the default culture.
        // If the app domain owning a customized culture that is set to teh thread and this
        // app domain get unloaded there is a code to clean up the culture from the thread 
        // using the code in AppDomain::ReleaseDomainStores.
 
        public CultureInfo CurrentUICulture { 
            [System.Security.SecuritySafeCritical]  // auto-generated
            get { 
                Contract.Ensures(Contract.Result() != null);

                // Fetch a local copy of m_CurrentUICulture to
                // avoid ----s that malicious user can introduce 
                if (m_CurrentUICulture == null) {
                    return CultureInfo.UserDefaultUICulture; 
                } 

#if FEATURE_LEAK_CULTURE_INFO 
                CultureInfo culture = null;

                if (!nativeGetSafeCulture(this, GetDomainID(), true, ref culture) || culture == null) {
                    return CultureInfo.UserDefaultUICulture; 
                }
 
                return culture; 
#else
                return m_CurrentUICulture; 
#endif

            }
 
            [System.Security.SecuritySafeCritical]  // auto-generated
            [HostProtection(ExternalThreading=true)] 
            set { 
                if (value == null) {
                    throw new ArgumentNullException("value"); 
                }
                Contract.EndContractBlock();

                //If they're trying to use a Culture with a name that we can't use in resource lookup, 
                //don't even let them set it on the thread.
                CultureInfo.VerifyCultureName(value, true); 
#if FEATURE_LEAK_CULTURE_INFO 
                if (nativeSetThreadUILocale(value.SortName) == false)
                { 
                    throw new ArgumentException(Environment.GetResourceString("Argument_InvalidResourceCultureName", value.Name));
                }
#else
                if (m_CurrentUICulture == null && m_CurrentCulture == null) 
                    nativeInitCultureAccessors();
#endif 
                value.StartCrossDomainTracking(); 
                m_CurrentUICulture = value;
            } 
        }

        // This returns the exposed context for a given context ID.
#if FEATURE_LEAK_CULTURE_INFO 
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        static extern private bool nativeSetThreadUILocale(String locale);
#endif 

        // As the culture can be customized object then we cannot hold any
        // reference to it before we check if it is safe because the app domain
        // owning this customized culture may get unloaded while executing this 
        // code. To achieve that we have to do the check using nativeGetSafeCulture
        // as the thread cannot get interrupted during the FCALL. 
        // If the culture is safe (not customized or created in current app domain) 
        // then the FCALL will return a reference to that culture otherwise the
        // FCALL will return failure. In case of failure we'll return the default culture. 
        // If the app domain owning a customized culture that is set to teh thread and this
        // app domain get unloaded there is a code to clean up the culture from the thread
        // using the code in AppDomain::ReleaseDomainStores.
 
        public CultureInfo CurrentCulture {
            [System.Security.SecuritySafeCritical]  // auto-generated 
            get { 
                Contract.Ensures(Contract.Result() != null);
 
                // Fetch a local copy of m_CurrentCulture to
                // avoid ----s that malicious user can introduce
                if (m_CurrentCulture == null) {
                    return CultureInfo.UserDefaultCulture; 
                }
 
#if FEATURE_LEAK_CULTURE_INFO 
                CultureInfo culture = null;
 
                if (!nativeGetSafeCulture(this, GetDomainID(), false, ref culture) || culture == null) {
                    return CultureInfo.UserDefaultCulture;
                }
 
                return culture;
#else 
                return m_CurrentCulture; 
#endif
            } 

            [System.Security.SecuritySafeCritical]  // auto-generated
#if FEATURE_LEAK_CULTURE_INFO
            [SecurityPermission(SecurityAction.Demand, ControlThread = true)] 
#endif
            set { 
                if (null==value) { 
                    throw new ArgumentNullException("value");
                } 
                Contract.EndContractBlock();

#if FEATURE_LEAK_CULTURE_INFO
                //If we can't set the nativeThreadLocale, we'll just let it stay 
                //at whatever value it had before.  This allows people who use
                //just managed code not to be limited by the underlying OS. 
                CultureInfo.nativeSetThreadLocale(value.SortName); 
#else
                if (m_CurrentCulture == null && m_CurrentUICulture == null) 
                    nativeInitCultureAccessors();
#endif
                value.StartCrossDomainTracking();
 
                m_CurrentCulture = value;
            } 
        } 

#if! FEATURE_LEAK_CULTURE_INFO 
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)]
        [DllImport(JitHelpers.QCall, CharSet = CharSet.Unicode)]
        [SuppressUnmanagedCodeSecurity] 
        private static extern void nativeInitCultureAccessors();
#endif 
 
        /*=============================================================*/
 
        /*=====================================================================
        **  Current thread context is stored in a slot in the thread local store
        **  CurrentContext gets the Context from the slot.
        ======================================================================*/ 
#if FEATURE_REMOTING
        public static Context CurrentContext 
        { 
            [System.Security.SecurityCritical]  // auto-generated_required
            get 
            {
                return CurrentThread.GetCurrentContextInternal();
            }
        } 

        [System.Security.SecurityCritical]  // auto-generated 
        internal Context GetCurrentContextInternal() 
        {
            if (m_Context == null) 
            {
                m_Context = Context.DefaultContext;
            }
            return m_Context; 
        }
#endif 
 
        [System.Security.SecurityCritical]  // auto-generated
        [HostProtection(SharedState=true, ExternalThreading=true)] 
        internal LogicalCallContext GetLogicalCallContext()
        {
                return ExecutionContext.LogicalCallContext;
        } 
        [System.Security.SecurityCritical]  // auto-generated
        [HostProtection(SharedState=true, ExternalThreading=true)] 
        internal LogicalCallContext SetLogicalCallContext( 
            LogicalCallContext callCtx)
        { 
            LogicalCallContext oldCtx = ExecutionContext.LogicalCallContext;
            ExecutionContext.LogicalCallContext = callCtx;
            return oldCtx;
        } 

        internal IllogicalCallContext GetIllogicalCallContext() 
        { 
            return ExecutionContext.IllogicalCallContext;
        } 


#if FEATURE_IMPERSONATION
        // Get and set thread's current principal (for role based security). 
        public static IPrincipal CurrentPrincipal
        { 
            [System.Security.SecuritySafeCritical]  // auto-generated 
            get
            { 
                lock (CurrentThread)
                {
                    IPrincipal principal = (IPrincipal)
                        CallContext.Principal; 
                    if (principal == null)
                    { 
                        principal = GetDomain().GetThreadPrincipal(); 
                        CallContext.Principal = principal;
                    } 
                    return principal;
                }
            }
 
            [System.Security.SecuritySafeCritical]  // auto-generated
            [SecurityPermissionAttribute(SecurityAction.Demand, Flags=SecurityPermissionFlag.ControlPrincipal)] 
#if !FEATURE_CORECLR 
            [TargetedPatchingOptOut("Performance critical to inline across NGen image boundaries")]
#endif 
            set
            {
                CallContext.Principal = value;
            } 
        }
#endif // FEATURE_IMPERSONATION 
 
        // Private routine called from unmanaged code to set an initial
        // principal for a newly created thread. 
        [System.Security.SecurityCritical]  // auto-generated
        private void SetPrincipalInternal(IPrincipal principal)
        {
            GetLogicalCallContext().SecurityData.Principal = principal; 
        }
 
#if FEATURE_REMOTING 

        // This returns the exposed context for a given context ID. 
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        internal static extern Context GetContextInternal(IntPtr id); 

        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        internal extern Object InternalCrossContextCallback(Context ctx, IntPtr ctxID, Int32 appDomainID, InternalCrossContextDelegate ftnToCall, Object[] args); 

        [System.Security.SecurityCritical]  // auto-generated
        internal Object InternalCrossContextCallback(Context ctx, InternalCrossContextDelegate ftnToCall, Object[] args)
        { 
            return InternalCrossContextCallback(ctx, ctx.InternalContextID, 0, ftnToCall, args);
        } 
 
        // CompleteCrossContextCallback is called by the EE after transitioning to the requested context
        private static Object CompleteCrossContextCallback(InternalCrossContextDelegate ftnToCall, Object[] args) 
        {
            return ftnToCall(args);
        }
#endif // FEATURE_REMOTING 

        /*===================================================================== 
        ** Returns the current domain in which current thread is running. 
        ======================================================================*/
 
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        private static extern AppDomain GetDomainInternal(); 
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        private static extern AppDomain GetFastDomainInternal();
 
        [System.Security.SecuritySafeCritical]  // auto-generated
        public static AppDomain GetDomain()
        {
            Contract.Ensures(Contract.Result() != null); 

#if FEATURE_REMOTING 
            if (CurrentThread.m_Context==null) 
#endif
            { 
                AppDomain ad;
                ad = GetFastDomainInternal();
                if (ad == null)
                    ad = GetDomainInternal(); 
                return ad;
            } 
#if FEATURE_REMOTING 
            else
            { 
                Contract.Assert( GetDomainInternal() == CurrentThread.m_Context.AppDomain, "AppDomains on the managed & unmanaged threads should match");
                return CurrentThread.m_Context.AppDomain;
            }
#endif 

        } 
 

        /* 
         *  This returns a unique id to identify an appdomain.
         */
        [System.Security.SecuritySafeCritical]  // auto-generated
        public static int GetDomainID() 
        {
            return GetDomain().GetId(); 
        } 

 
        // Retrieves the name of the thread.
        //
        public  String Name {
            get { 
                return m_Name;
 
            } 
            [System.Security.SecuritySafeCritical]  // auto-generated
            [HostProtection(ExternalThreading=true)] 
            set {
                lock(this) {
                    if (m_Name != null)
                        throw new InvalidOperationException(Environment.GetResourceString("InvalidOperation_WriteOnce")); 
                    m_Name = value;
 
                    InformThreadNameChange(GetNativeHandle(), value, (value != null) ? value.Length : 0); 
                }
            } 
        }

        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)] 
        [DllImport(JitHelpers.QCall, CharSet = CharSet.Unicode)]
        [SuppressUnmanagedCodeSecurity] 
        private static extern void InformThreadNameChange(ThreadHandle t, String name, int len); 

        internal Object AbortReason { 
            [System.Security.SecurityCritical]  // auto-generated
            get {
                object result = null;
                try 
                {
                    result = GetAbortReason(); 
                } 
                catch (Exception e)
                { 
                    throw new InvalidOperationException(Environment.GetResourceString("InvalidOperation_ExceptionStateCrossAppDomain"), e);
                }
                return result;
            } 
            [System.Security.SecurityCritical]  // auto-generated
            set { SetAbortReason(value); } 
        } 

        /* 
         *  This marks the beginning of a critical code region.
         */
        [System.Security.SecuritySafeCritical]  // auto-generated
        [HostProtection(Synchronization=true, ExternalThreading=true)] 
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)] 
        public static extern void BeginCriticalRegion();
 
        /*
         *  This marks the end of a critical code region.
         */
        [System.Security.SecuritySafeCritical]  // auto-generated 
        [HostProtection(Synchronization=true, ExternalThreading=true)]
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
        public static extern void EndCriticalRegion(); 

        /*
         *  This marks the beginning of a code region that requires thread affinity.
         */ 
        [System.Security.SecurityCritical]  // auto-generated_required
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
        public static extern void BeginThreadAffinity(); 

        /*
         *  This marks the end of a code region that requires thread affinity.
         */ 
        [System.Security.SecurityCritical]  // auto-generated_required
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
        public static extern void EndThreadAffinity(); 

#if IO_CANCELLATION_ENABLED
        internal List CancellationSignals {
            [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)] 
            get {
                if (m_CancellationSignals == null) { 
                    List signals = new List(); 
                    Interlocked.CompareExchange(ref m_CancellationSignals, signals, null);
                } 
                return m_CancellationSignals;
            }
        }
#endif 
        /*==========================================================================
        ** Volatile Read & Write and MemoryBarrier methods. 
        ** Provides the ability to read and write values ensuring that the values 
        ** are read/written each time they are accessed.
        =========================================================================*/ 

        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static byte VolatileRead(ref byte address)
        { 
            byte ret = address;
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way. 
            return ret; 
        }
 
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static short VolatileRead(ref short address)
        {
            short ret = address; 
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            return ret; 
        } 

        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations 
        public static int VolatileRead(ref int address)
        {
            int ret = address;
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way. 
            return ret;
        } 
 
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static long VolatileRead(ref long address) 
        {
            long ret = address;
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            return ret; 
        }
 
        [CLSCompliant(false)] 
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static sbyte VolatileRead(ref sbyte address) 
        {
            sbyte ret = address;
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            return ret; 
        }
 
        [CLSCompliant(false)] 
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static ushort VolatileRead(ref ushort address) 
        {
            ushort ret = address;
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            return ret; 
        }
 
        [CLSCompliant(false)] 
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static uint VolatileRead(ref uint address) 
        {
            uint ret = address;
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            return ret; 
        }
 
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations 
        public static IntPtr VolatileRead(ref IntPtr address)
        { 
            IntPtr ret = address;
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            return ret;
        } 

        [CLSCompliant(false)] 
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations 
        public static UIntPtr VolatileRead(ref UIntPtr address)
        { 
            UIntPtr ret = address;
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            return ret;
        } 

        [CLSCompliant(false)] 
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations 
        public static ulong VolatileRead(ref ulong address)
        { 
            ulong ret = address;
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            return ret;
        } 

        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations 
        public static float VolatileRead(ref float address) 
        {
            float ret = address; 
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            return ret;
        }
 
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static double VolatileRead(ref double address) 
        { 
            double ret = address;
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way. 
            return ret;
        }

        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations 
        public static Object VolatileRead(ref Object address)
        { 
            Object ret = address; 
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            return ret; 
        }

        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static void VolatileWrite(ref byte address, byte value) 
        {
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way. 
            address = value; 
        }
 
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static void VolatileWrite(ref short address, short value)
        {
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way. 
            address = value;
        } 
 
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static void VolatileWrite(ref int address, int value) 
        {
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            address = value;
        } 

        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations 
        public static void VolatileWrite(ref long address, long value) 
        {
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way. 
            address = value;
        }

        [CLSCompliant(false)] 
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static void VolatileWrite(ref sbyte address, sbyte value) 
        { 
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            address = value; 
        }

        [CLSCompliant(false)]
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations 
        public static void VolatileWrite(ref ushort address, ushort value)
        { 
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way. 
            address = value;
        } 

        [CLSCompliant(false)]
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static void VolatileWrite(ref uint address, uint value) 
        {
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way. 
            address = value; 
        }
 
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static void VolatileWrite(ref IntPtr address, IntPtr value)
        {
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way. 
            address = value;
        } 
 
        [CLSCompliant(false)]
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations 
        public static void VolatileWrite(ref UIntPtr address, UIntPtr value)
        {
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            address = value; 
        }
 
        [CLSCompliant(false)] 
        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static void VolatileWrite(ref ulong address, ulong value) 
        {
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            address = value;
        } 

        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations 
        public static void VolatileWrite(ref float address, float value) 
        {
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way. 
            address = value;
        }

        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations 
        public static void VolatileWrite(ref double address, double value)
        { 
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way. 
            address = value;
        } 

        [MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
        public static void VolatileWrite(ref Object address, Object value)
        { 
            MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
            address = value; 
        } 

        [System.Security.SecuritySafeCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)]
        public static extern void MemoryBarrier();
 
        private static LocalDataStoreMgr LocalDataStoreManager
        { 
            get 
            {
                if (s_LocalDataStoreMgr == null) 
                {
                    Interlocked.CompareExchange(ref s_LocalDataStoreMgr, new LocalDataStoreMgr(), null);
                }
 
                return s_LocalDataStoreMgr;
            } 
        } 

        void _Thread.GetTypeInfoCount(out uint pcTInfo) 
        {
            throw new NotImplementedException();
        }
 
        void _Thread.GetTypeInfo(uint iTInfo, uint lcid, IntPtr ppTInfo)
        { 
            throw new NotImplementedException(); 
        }
 
        void _Thread.GetIDsOfNames([In] ref Guid riid, IntPtr rgszNames, uint cNames, uint lcid, IntPtr rgDispId)
        {
            throw new NotImplementedException();
        } 

        void _Thread.Invoke(uint dispIdMember, [In] ref Guid riid, uint lcid, short wFlags, IntPtr pDispParams, IntPtr pVarResult, IntPtr pExcepInfo, IntPtr puArgErr) 
        { 
            throw new NotImplementedException();
        } 

        // Helper function to set the AbortReason for a thread abort.
        //  Checks that they're not alredy set, and then atomically updates
        //  the reason info (object + ADID). 
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)] 
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        internal extern void SetAbortReason(Object o);
 
        // Helper function to retrieve the AbortReason from a thread
        //  abort.  Will perform cross-AppDomain marshalling if the object
        //  lives in a different AppDomain from the requester.
        [System.Security.SecurityCritical]  // auto-generated 
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        internal extern Object GetAbortReason(); 

        // Helper function to clear the AbortReason.  Takes care of 
        //  AppDomain related cleanup if required.
        [System.Security.SecurityCritical]  // auto-generated
        [ResourceExposure(ResourceScope.None)]
        [MethodImplAttribute(MethodImplOptions.InternalCall)] 
        internal extern void ClearAbortReason();
 
 
    } // End of class Thread
 
    // declaring a local var of this enum type and passing it by ref into a function that needs to do a
    // stack crawl will both prevent inlining of the calle and pass an ESP point to stack crawl to
    // Declaring these in EH clauses is illegal; they must declared in the main method body
    [Serializable] 
    internal enum StackCrawlMark
    { 
        LookForMe = 0, 
        LookForMyCaller = 1,
        LookForMyCallersCaller = 2, 
        LookForThread = 3
    }

} 

// File provided for Reference Use Only by Microsoft Corporation (c) 2007.


                        

Link Menu

Network programming in C#, Network Programming in VB.NET, Network Programming in .NET
This book is available now!
Buy at Amazon US or
Buy at Amazon UK