Double.cs source code in C# .NET

Source code for the .NET framework in C#

                        

Code:

/ 4.0 / 4.0 / DEVDIV_TFS / Dev10 / Releases / RTMRel / ndp / clr / src / BCL / System / Double.cs / 1305376 / Double.cs

                            // ==++== 
//
//   Copyright (c) Microsoft Corporation.  All rights reserved.
//
// ==--== 
/*============================================================
** 
** Class:  Double 
**
** 
** Purpose: A representation of an IEEE double precision
**          floating point number.
**
** 
===========================================================*/
namespace System { 
 
    using System;
    using System.Globalization; 
///#if GENERICS_WORK
///    using System.Numerics;
///#endif
    using System.Runtime.InteropServices; 
    using System.Runtime.CompilerServices;
    using System.Runtime.ConstrainedExecution; 
    using System.Diagnostics.Contracts; 

[Serializable] 
[StructLayout(LayoutKind.Sequential)]
[System.Runtime.InteropServices.ComVisible(true)]
#if GENERICS_WORK
    public struct Double : IComparable, IFormattable, IConvertible 
        , IComparable, IEquatable
///     , IArithmetic 
#if false // ugly hack to fix syntax for TrimSrc parser, which ignores #if directives 
    {
    } 
#endif
#else
    public struct Double : IComparable, IFormattable, IConvertible
#endif 
    {
        internal double m_value; 
 
        //
        // Public Constants 
        //
        public const double MinValue = -1.7976931348623157E+308;
        public const double MaxValue = 1.7976931348623157E+308;
 
        // Note Epsilon should be a double whose hex representation is 0x1
        // on little endian machines. 
        public const double Epsilon  = 4.9406564584124654E-324; 
        public const double NegativeInfinity = (double)-1.0 / (double)(0.0);
        public const double PositiveInfinity = (double)1.0 / (double)(0.0); 
        public const double NaN = (double)0.0 / (double)0.0;

        internal static double NegativeZero = BitConverter.Int64BitsToDouble(unchecked((long)0x8000000000000000));
 
        [Pure]
        [System.Security.SecuritySafeCritical]  // auto-generated 
        public unsafe static bool IsInfinity(double d) { 
            return (*(long*)(&d) & 0x7FFFFFFFFFFFFFFF) == 0x7FF0000000000000;
        } 

        [Pure]
        public static bool IsPositiveInfinity(double d) {
            //Jit will generate inlineable code with this 
            if (d == double.PositiveInfinity)
            { 
                return true; 
            }
            else 
            {
                return false;
            }
        } 

        [Pure] 
        public static bool IsNegativeInfinity(double d) { 
            //Jit will generate inlineable code with this
            if (d == double.NegativeInfinity) 
            {
                return true;
            }
            else 
            {
                return false; 
            } 
        }
 
        [Pure]
        [System.Security.SecuritySafeCritical]  // auto-generated
        internal unsafe static bool IsNegative(double d) {
            return (*(UInt64*)(&d) & 0x8000000000000000) == 0x8000000000000000; 
        }
 
        [Pure] 
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
        public static bool IsNaN(double d) 
        {
            //Jit will generate inlineable code with this
// warning CS1718: comparison to same variable
#pragma warning disable 1718 
            if (d != d)
            { 
                return true; 
            }
            else 
            {
                return false;
            }
#pragma warning restore 1718 
        }
 
 
        // Compares this object to another object, returning an instance of System.Relation.
        // Null is considered less than any instance. 
        //
        // If object is not of type Double, this method throws an ArgumentException.
        //
        // Returns a value less than zero if this  object 
        //
        public int CompareTo(Object value) { 
            if (value == null) { 
                return 1;
            } 
            if (value is Double) {
                double d = (double)value;
                if (m_value < d) return -1;
                if (m_value > d) return 1; 
                if (m_value == d) return 0;
 
                // At least one of the values is NaN. 
                if (IsNaN(m_value))
                    return (IsNaN(d) ? 0 : -1); 
                else
                    return 1;
            }
            throw new ArgumentException(Environment.GetResourceString("Arg_MustBeDouble")); 
        }
 
        public int CompareTo(Double value) { 
            if (m_value < value) return -1;
            if (m_value > value) return 1; 
            if (m_value == value) return 0;

            // At least one of the values is NaN.
            if (IsNaN(m_value)) 
                return (IsNaN(value) ? 0 : -1);
            else 
                return 1; 
        }
 
        // True if obj is another Double with the same value as the current instance.  This is
        // a method of object equality, that only returns true if obj is also a double.
        public override bool Equals(Object obj) {
            if (!(obj is Double)) { 
                return false;
            } 
            double temp = ((Double)obj).m_value; 
            // This code below is written this way for performance reasons i.e the != and == check is intentional.
            if (temp == m_value) { 
                return true;
            }
            return IsNaN(temp) && IsNaN(m_value);
        } 

        public static bool operator ==(Double left, Double right) { 
            return left == right; 
        }
 
        public static bool operator !=(Double left, Double right) {
            return left != right;
        }
 
        public static bool operator <(Double left, Double right) {
            return left < right; 
        } 

        public static bool operator >(Double left, Double right) { 
            return left > right;
        }

        public static bool operator <=(Double left, Double right) { 
            return left <= right;
        } 
 
        public static bool operator >=(Double left, Double right) {
            return left >= right; 
        }

        public bool Equals(Double obj)
        { 
            if (obj == m_value) {
                return true; 
            } 
            return IsNaN(obj) && IsNaN(m_value);
        } 

        //The hashcode for a double is the absolute value of the integer representation
        //of that double.
        // 
        [System.Security.SecuritySafeCritical]  // auto-generated
        public unsafe override int GetHashCode() { 
            double d = m_value; 
            if (d == 0) {
                // Ensure that 0 and -0 have the same hash code 
                return 0;
            }
            long value = *(long*)(&d);
            return unchecked((int)value) ^ ((int)(value >> 32)); 
        }
 
        [System.Security.SecuritySafeCritical]  // auto-generated 
        public override String ToString() {
            Contract.Ensures(Contract.Result() != null); 
            return Number.FormatDouble(m_value, null, NumberFormatInfo.CurrentInfo);
        }

        [System.Security.SecuritySafeCritical]  // auto-generated 
        public String ToString(String format) {
            Contract.Ensures(Contract.Result() != null); 
            return Number.FormatDouble(m_value, format, NumberFormatInfo.CurrentInfo); 
        }
 
        [System.Security.SecuritySafeCritical]  // auto-generated
        public String ToString(IFormatProvider provider) {
            Contract.Ensures(Contract.Result() != null);
            return Number.FormatDouble(m_value, null, NumberFormatInfo.GetInstance(provider)); 
        }
 
        [System.Security.SecuritySafeCritical]  // auto-generated 
        public String ToString(String format, IFormatProvider provider) {
            Contract.Ensures(Contract.Result() != null); 
            return Number.FormatDouble(m_value, format, NumberFormatInfo.GetInstance(provider));
        }

        public static double Parse(String s) { 
            return Parse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo);
        } 
 
        public static double Parse(String s, NumberStyles style) {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style); 
            return Parse(s, style, NumberFormatInfo.CurrentInfo);
        }

        public static double Parse(String s, IFormatProvider provider) { 
            return Parse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.GetInstance(provider));
        } 
 
        public static double Parse(String s, NumberStyles style, IFormatProvider provider) {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style); 
            return Parse(s, style, NumberFormatInfo.GetInstance(provider));
        }

        // Parses a double from a String in the given style.  If 
        // a NumberFormatInfo isn't specified, the current culture's
        // NumberFormatInfo is assumed. 
        // 
        // This method will not throw an OverflowException, but will return
        // PositiveInfinity or NegativeInfinity for a number that is too 
        // large or too small.
        //
        private static double Parse(String s, NumberStyles style, NumberFormatInfo info) {
            return Number.ParseDouble(s, style, info); 
        }
 
        [System.Security.SecuritySafeCritical]  // auto-generated 
        public static bool TryParse(String s, out double result) {
            return TryParse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result); 
        }

        [System.Security.SecuritySafeCritical]  // auto-generated
        public static bool TryParse(String s, NumberStyles style, IFormatProvider provider, out double result) { 
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result); 
        } 

        private static bool TryParse(String s, NumberStyles style, NumberFormatInfo info, out double result) { 
            if (s == null) {
                result = 0;
                return false;
            } 
            bool success = Number.TryParseDouble(s, style, info, out result);
            if (!success) { 
                String sTrim = s.Trim(); 
                if (sTrim.Equals(info.PositiveInfinitySymbol)) {
                    result = PositiveInfinity; 
                } else if (sTrim.Equals(info.NegativeInfinitySymbol)) {
                    result = NegativeInfinity;
                } else if (sTrim.Equals(info.NaNSymbol)) {
                    result = NaN; 
                } else
                    return false; // We really failed 
            } 
            return true;
        } 

        //
        // IConvertible implementation
        // 

        public TypeCode GetTypeCode() { 
            return TypeCode.Double; 
        }
 
        /// 
        bool IConvertible.ToBoolean(IFormatProvider provider) {
            return Convert.ToBoolean(m_value);
        } 

        ///  
        char IConvertible.ToChar(IFormatProvider provider) { 
            throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Double", "Char"));
        } 

        /// 
        sbyte IConvertible.ToSByte(IFormatProvider provider) {
            return Convert.ToSByte(m_value); 
        }
 
        ///  
        byte IConvertible.ToByte(IFormatProvider provider) {
            return Convert.ToByte(m_value); 
        }

        /// 
        short IConvertible.ToInt16(IFormatProvider provider) { 
            return Convert.ToInt16(m_value);
        } 
 
        /// 
        ushort IConvertible.ToUInt16(IFormatProvider provider) { 
            return Convert.ToUInt16(m_value);
        }

        ///  
        int IConvertible.ToInt32(IFormatProvider provider) {
            return Convert.ToInt32(m_value); 
        } 

        ///  
        uint IConvertible.ToUInt32(IFormatProvider provider) {
            return Convert.ToUInt32(m_value);
        }
 
        /// 
        long IConvertible.ToInt64(IFormatProvider provider) { 
            return Convert.ToInt64(m_value); 
        }
 
        /// 
        ulong IConvertible.ToUInt64(IFormatProvider provider) {
            return Convert.ToUInt64(m_value);
        } 

        ///  
        float IConvertible.ToSingle(IFormatProvider provider) { 
            return Convert.ToSingle(m_value);
        } 

        /// 
        double IConvertible.ToDouble(IFormatProvider provider) {
            return m_value; 
        }
 
        ///  
        Decimal IConvertible.ToDecimal(IFormatProvider provider) {
            return Convert.ToDecimal(m_value); 
        }

        /// 
        DateTime IConvertible.ToDateTime(IFormatProvider provider) { 
            throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Double", "DateTime"));
        } 
 
        /// 
        Object IConvertible.ToType(Type type, IFormatProvider provider) { 
            return Convert.DefaultToType((IConvertible)this, type, provider);
        }

///#if GENERICS_WORK 
///        //
///        // IArithmetic implementation 
///        // 
///
///        ///  
///        Double IArithmetic.AbsoluteValue(out bool overflowed) {
///            Double abs = (m_value < 0 ? -m_value : m_value);
///            overflowed = IsInfinity(abs) || IsNaN(abs);
///            return abs; 
///        }
/// 
///        ///  
///        Double IArithmetic.Negate(out bool overflowed) {
///            Double neg= -m_value; 
///            overflowed = IsInfinity(neg) || IsNaN(neg);
///            return neg;
///        }
/// 
///        /// 
///        Double IArithmetic.Sign(out bool overflowed) { 
///            overflowed = IsNaN(m_value); 
///            if (overflowed) {
///                return m_value; 
///            }
///            return (m_value >= 0 ? (m_value == 0 ? 0 : 1) : -1);
///        }
/// 
///        /// 
///        Double IArithmetic.Add(Double addend, out bool overflowed) { 
///            Double s = m_value + addend; 
///            overflowed = IsInfinity(s) || IsNaN(s);
///            return s; 
///        }
///
///        /// 
///        Double IArithmetic.Subtract(Double subtrahend, out bool overflowed) { 
///            Double s = m_value - subtrahend;
///            overflowed = IsInfinity(s) || IsNaN(s); 
///            return s; 
///        }
/// 
///        /// 
///        Double IArithmetic.Multiply(Double multiplier, out bool overflowed) {
///            Double s = m_value * multiplier;
///            overflowed = IsInfinity(s) || IsNaN(s); 
///            return s;
///        } 
/// 
///
///        ///  
///        Double IArithmetic.Divide(Double divisor, out bool overflowed) {
///            Double s = m_value / divisor;
///            overflowed = IsInfinity(s) || IsNaN(s);
///            return s; 
///        }
/// 
///        ///  
///        Double IArithmetic.DivideRemainder(Double divisor, out Double remainder, out bool overflowed) {
///            remainder = m_value % divisor; 
///            Double s = m_value / divisor;
///            overflowed = IsInfinity(s) || IsInfinity(remainder) || IsNaN(s) || IsNaN(remainder);
///            return s;
///        } 
///
///        ///  
///        Double IArithmetic.Remainder(Double divisor, out bool overflowed) { 
///            Double d = m_value % divisor;
///            overflowed = IsInfinity(d) || IsNaN(d); 
///            return d;
///        }
///
///        ///  
///        ArithmeticDescriptor IArithmetic.GetDescriptor() {
///            if (s_descriptor == null) { 
///                s_descriptor = new DoubleArithmeticDescriptor( ArithmeticCapabilities.One 
///                                                             | ArithmeticCapabilities.Zero
///                                                             | ArithmeticCapabilities.MaxValue 
///                                                             | ArithmeticCapabilities.MinValue
///                                                             | ArithmeticCapabilities.PositiveInfinity
///                                                             | ArithmeticCapabilities.NegativeInfinity);
///            } 
///            return s_descriptor;
///        } 
/// 
///        private static DoubleArithmeticDescriptor s_descriptor;
/// 
///        class DoubleArithmeticDescriptor : ArithmeticDescriptor {
///            public DoubleArithmeticDescriptor(ArithmeticCapabilities capabilities) : base(capabilities) {}
///
///            public override Double One { 
///                get {
///                    return (Double) 1; 
///                } 
///            }
/// 
///            public override Double Zero {
///                get {
///                    return (Double) 0;
///                } 
///            }
/// 
///            public override Double MinValue { 
///                get {
///                    return Double.MinValue; 
///                }
///            }
///
///            public override Double MaxValue { 
///                get {
///                    return Double.MaxValue; 
///                } 
///            }
/// 
///            public override Double PositiveInfinity {
///                get {
///                    return Double.PositiveInfinity;
///                } 
///            }
/// 
///            public override Double NegativeInfinity { 
///                get {
///                    return Double.NegativeInfinity; 
///                }
///            }
///
///        } 
///#endif // #if GENERICS_WORK
 
    } 
}

// File provided for Reference Use Only by Microsoft Corporation (c) 2007.
// ==++== 
//
//   Copyright (c) Microsoft Corporation.  All rights reserved.
//
// ==--== 
/*============================================================
** 
** Class:  Double 
**
** 
** Purpose: A representation of an IEEE double precision
**          floating point number.
**
** 
===========================================================*/
namespace System { 
 
    using System;
    using System.Globalization; 
///#if GENERICS_WORK
///    using System.Numerics;
///#endif
    using System.Runtime.InteropServices; 
    using System.Runtime.CompilerServices;
    using System.Runtime.ConstrainedExecution; 
    using System.Diagnostics.Contracts; 

[Serializable] 
[StructLayout(LayoutKind.Sequential)]
[System.Runtime.InteropServices.ComVisible(true)]
#if GENERICS_WORK
    public struct Double : IComparable, IFormattable, IConvertible 
        , IComparable, IEquatable
///     , IArithmetic 
#if false // ugly hack to fix syntax for TrimSrc parser, which ignores #if directives 
    {
    } 
#endif
#else
    public struct Double : IComparable, IFormattable, IConvertible
#endif 
    {
        internal double m_value; 
 
        //
        // Public Constants 
        //
        public const double MinValue = -1.7976931348623157E+308;
        public const double MaxValue = 1.7976931348623157E+308;
 
        // Note Epsilon should be a double whose hex representation is 0x1
        // on little endian machines. 
        public const double Epsilon  = 4.9406564584124654E-324; 
        public const double NegativeInfinity = (double)-1.0 / (double)(0.0);
        public const double PositiveInfinity = (double)1.0 / (double)(0.0); 
        public const double NaN = (double)0.0 / (double)0.0;

        internal static double NegativeZero = BitConverter.Int64BitsToDouble(unchecked((long)0x8000000000000000));
 
        [Pure]
        [System.Security.SecuritySafeCritical]  // auto-generated 
        public unsafe static bool IsInfinity(double d) { 
            return (*(long*)(&d) & 0x7FFFFFFFFFFFFFFF) == 0x7FF0000000000000;
        } 

        [Pure]
        public static bool IsPositiveInfinity(double d) {
            //Jit will generate inlineable code with this 
            if (d == double.PositiveInfinity)
            { 
                return true; 
            }
            else 
            {
                return false;
            }
        } 

        [Pure] 
        public static bool IsNegativeInfinity(double d) { 
            //Jit will generate inlineable code with this
            if (d == double.NegativeInfinity) 
            {
                return true;
            }
            else 
            {
                return false; 
            } 
        }
 
        [Pure]
        [System.Security.SecuritySafeCritical]  // auto-generated
        internal unsafe static bool IsNegative(double d) {
            return (*(UInt64*)(&d) & 0x8000000000000000) == 0x8000000000000000; 
        }
 
        [Pure] 
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
        public static bool IsNaN(double d) 
        {
            //Jit will generate inlineable code with this
// warning CS1718: comparison to same variable
#pragma warning disable 1718 
            if (d != d)
            { 
                return true; 
            }
            else 
            {
                return false;
            }
#pragma warning restore 1718 
        }
 
 
        // Compares this object to another object, returning an instance of System.Relation.
        // Null is considered less than any instance. 
        //
        // If object is not of type Double, this method throws an ArgumentException.
        //
        // Returns a value less than zero if this  object 
        //
        public int CompareTo(Object value) { 
            if (value == null) { 
                return 1;
            } 
            if (value is Double) {
                double d = (double)value;
                if (m_value < d) return -1;
                if (m_value > d) return 1; 
                if (m_value == d) return 0;
 
                // At least one of the values is NaN. 
                if (IsNaN(m_value))
                    return (IsNaN(d) ? 0 : -1); 
                else
                    return 1;
            }
            throw new ArgumentException(Environment.GetResourceString("Arg_MustBeDouble")); 
        }
 
        public int CompareTo(Double value) { 
            if (m_value < value) return -1;
            if (m_value > value) return 1; 
            if (m_value == value) return 0;

            // At least one of the values is NaN.
            if (IsNaN(m_value)) 
                return (IsNaN(value) ? 0 : -1);
            else 
                return 1; 
        }
 
        // True if obj is another Double with the same value as the current instance.  This is
        // a method of object equality, that only returns true if obj is also a double.
        public override bool Equals(Object obj) {
            if (!(obj is Double)) { 
                return false;
            } 
            double temp = ((Double)obj).m_value; 
            // This code below is written this way for performance reasons i.e the != and == check is intentional.
            if (temp == m_value) { 
                return true;
            }
            return IsNaN(temp) && IsNaN(m_value);
        } 

        public static bool operator ==(Double left, Double right) { 
            return left == right; 
        }
 
        public static bool operator !=(Double left, Double right) {
            return left != right;
        }
 
        public static bool operator <(Double left, Double right) {
            return left < right; 
        } 

        public static bool operator >(Double left, Double right) { 
            return left > right;
        }

        public static bool operator <=(Double left, Double right) { 
            return left <= right;
        } 
 
        public static bool operator >=(Double left, Double right) {
            return left >= right; 
        }

        public bool Equals(Double obj)
        { 
            if (obj == m_value) {
                return true; 
            } 
            return IsNaN(obj) && IsNaN(m_value);
        } 

        //The hashcode for a double is the absolute value of the integer representation
        //of that double.
        // 
        [System.Security.SecuritySafeCritical]  // auto-generated
        public unsafe override int GetHashCode() { 
            double d = m_value; 
            if (d == 0) {
                // Ensure that 0 and -0 have the same hash code 
                return 0;
            }
            long value = *(long*)(&d);
            return unchecked((int)value) ^ ((int)(value >> 32)); 
        }
 
        [System.Security.SecuritySafeCritical]  // auto-generated 
        public override String ToString() {
            Contract.Ensures(Contract.Result() != null); 
            return Number.FormatDouble(m_value, null, NumberFormatInfo.CurrentInfo);
        }

        [System.Security.SecuritySafeCritical]  // auto-generated 
        public String ToString(String format) {
            Contract.Ensures(Contract.Result() != null); 
            return Number.FormatDouble(m_value, format, NumberFormatInfo.CurrentInfo); 
        }
 
        [System.Security.SecuritySafeCritical]  // auto-generated
        public String ToString(IFormatProvider provider) {
            Contract.Ensures(Contract.Result() != null);
            return Number.FormatDouble(m_value, null, NumberFormatInfo.GetInstance(provider)); 
        }
 
        [System.Security.SecuritySafeCritical]  // auto-generated 
        public String ToString(String format, IFormatProvider provider) {
            Contract.Ensures(Contract.Result() != null); 
            return Number.FormatDouble(m_value, format, NumberFormatInfo.GetInstance(provider));
        }

        public static double Parse(String s) { 
            return Parse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo);
        } 
 
        public static double Parse(String s, NumberStyles style) {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style); 
            return Parse(s, style, NumberFormatInfo.CurrentInfo);
        }

        public static double Parse(String s, IFormatProvider provider) { 
            return Parse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.GetInstance(provider));
        } 
 
        public static double Parse(String s, NumberStyles style, IFormatProvider provider) {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style); 
            return Parse(s, style, NumberFormatInfo.GetInstance(provider));
        }

        // Parses a double from a String in the given style.  If 
        // a NumberFormatInfo isn't specified, the current culture's
        // NumberFormatInfo is assumed. 
        // 
        // This method will not throw an OverflowException, but will return
        // PositiveInfinity or NegativeInfinity for a number that is too 
        // large or too small.
        //
        private static double Parse(String s, NumberStyles style, NumberFormatInfo info) {
            return Number.ParseDouble(s, style, info); 
        }
 
        [System.Security.SecuritySafeCritical]  // auto-generated 
        public static bool TryParse(String s, out double result) {
            return TryParse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result); 
        }

        [System.Security.SecuritySafeCritical]  // auto-generated
        public static bool TryParse(String s, NumberStyles style, IFormatProvider provider, out double result) { 
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result); 
        } 

        private static bool TryParse(String s, NumberStyles style, NumberFormatInfo info, out double result) { 
            if (s == null) {
                result = 0;
                return false;
            } 
            bool success = Number.TryParseDouble(s, style, info, out result);
            if (!success) { 
                String sTrim = s.Trim(); 
                if (sTrim.Equals(info.PositiveInfinitySymbol)) {
                    result = PositiveInfinity; 
                } else if (sTrim.Equals(info.NegativeInfinitySymbol)) {
                    result = NegativeInfinity;
                } else if (sTrim.Equals(info.NaNSymbol)) {
                    result = NaN; 
                } else
                    return false; // We really failed 
            } 
            return true;
        } 

        //
        // IConvertible implementation
        // 

        public TypeCode GetTypeCode() { 
            return TypeCode.Double; 
        }
 
        /// 
        bool IConvertible.ToBoolean(IFormatProvider provider) {
            return Convert.ToBoolean(m_value);
        } 

        ///  
        char IConvertible.ToChar(IFormatProvider provider) { 
            throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Double", "Char"));
        } 

        /// 
        sbyte IConvertible.ToSByte(IFormatProvider provider) {
            return Convert.ToSByte(m_value); 
        }
 
        ///  
        byte IConvertible.ToByte(IFormatProvider provider) {
            return Convert.ToByte(m_value); 
        }

        /// 
        short IConvertible.ToInt16(IFormatProvider provider) { 
            return Convert.ToInt16(m_value);
        } 
 
        /// 
        ushort IConvertible.ToUInt16(IFormatProvider provider) { 
            return Convert.ToUInt16(m_value);
        }

        ///  
        int IConvertible.ToInt32(IFormatProvider provider) {
            return Convert.ToInt32(m_value); 
        } 

        ///  
        uint IConvertible.ToUInt32(IFormatProvider provider) {
            return Convert.ToUInt32(m_value);
        }
 
        /// 
        long IConvertible.ToInt64(IFormatProvider provider) { 
            return Convert.ToInt64(m_value); 
        }
 
        /// 
        ulong IConvertible.ToUInt64(IFormatProvider provider) {
            return Convert.ToUInt64(m_value);
        } 

        ///  
        float IConvertible.ToSingle(IFormatProvider provider) { 
            return Convert.ToSingle(m_value);
        } 

        /// 
        double IConvertible.ToDouble(IFormatProvider provider) {
            return m_value; 
        }
 
        ///  
        Decimal IConvertible.ToDecimal(IFormatProvider provider) {
            return Convert.ToDecimal(m_value); 
        }

        /// 
        DateTime IConvertible.ToDateTime(IFormatProvider provider) { 
            throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Double", "DateTime"));
        } 
 
        /// 
        Object IConvertible.ToType(Type type, IFormatProvider provider) { 
            return Convert.DefaultToType((IConvertible)this, type, provider);
        }

///#if GENERICS_WORK 
///        //
///        // IArithmetic implementation 
///        // 
///
///        ///  
///        Double IArithmetic.AbsoluteValue(out bool overflowed) {
///            Double abs = (m_value < 0 ? -m_value : m_value);
///            overflowed = IsInfinity(abs) || IsNaN(abs);
///            return abs; 
///        }
/// 
///        ///  
///        Double IArithmetic.Negate(out bool overflowed) {
///            Double neg= -m_value; 
///            overflowed = IsInfinity(neg) || IsNaN(neg);
///            return neg;
///        }
/// 
///        /// 
///        Double IArithmetic.Sign(out bool overflowed) { 
///            overflowed = IsNaN(m_value); 
///            if (overflowed) {
///                return m_value; 
///            }
///            return (m_value >= 0 ? (m_value == 0 ? 0 : 1) : -1);
///        }
/// 
///        /// 
///        Double IArithmetic.Add(Double addend, out bool overflowed) { 
///            Double s = m_value + addend; 
///            overflowed = IsInfinity(s) || IsNaN(s);
///            return s; 
///        }
///
///        /// 
///        Double IArithmetic.Subtract(Double subtrahend, out bool overflowed) { 
///            Double s = m_value - subtrahend;
///            overflowed = IsInfinity(s) || IsNaN(s); 
///            return s; 
///        }
/// 
///        /// 
///        Double IArithmetic.Multiply(Double multiplier, out bool overflowed) {
///            Double s = m_value * multiplier;
///            overflowed = IsInfinity(s) || IsNaN(s); 
///            return s;
///        } 
/// 
///
///        ///  
///        Double IArithmetic.Divide(Double divisor, out bool overflowed) {
///            Double s = m_value / divisor;
///            overflowed = IsInfinity(s) || IsNaN(s);
///            return s; 
///        }
/// 
///        ///  
///        Double IArithmetic.DivideRemainder(Double divisor, out Double remainder, out bool overflowed) {
///            remainder = m_value % divisor; 
///            Double s = m_value / divisor;
///            overflowed = IsInfinity(s) || IsInfinity(remainder) || IsNaN(s) || IsNaN(remainder);
///            return s;
///        } 
///
///        ///  
///        Double IArithmetic.Remainder(Double divisor, out bool overflowed) { 
///            Double d = m_value % divisor;
///            overflowed = IsInfinity(d) || IsNaN(d); 
///            return d;
///        }
///
///        ///  
///        ArithmeticDescriptor IArithmetic.GetDescriptor() {
///            if (s_descriptor == null) { 
///                s_descriptor = new DoubleArithmeticDescriptor( ArithmeticCapabilities.One 
///                                                             | ArithmeticCapabilities.Zero
///                                                             | ArithmeticCapabilities.MaxValue 
///                                                             | ArithmeticCapabilities.MinValue
///                                                             | ArithmeticCapabilities.PositiveInfinity
///                                                             | ArithmeticCapabilities.NegativeInfinity);
///            } 
///            return s_descriptor;
///        } 
/// 
///        private static DoubleArithmeticDescriptor s_descriptor;
/// 
///        class DoubleArithmeticDescriptor : ArithmeticDescriptor {
///            public DoubleArithmeticDescriptor(ArithmeticCapabilities capabilities) : base(capabilities) {}
///
///            public override Double One { 
///                get {
///                    return (Double) 1; 
///                } 
///            }
/// 
///            public override Double Zero {
///                get {
///                    return (Double) 0;
///                } 
///            }
/// 
///            public override Double MinValue { 
///                get {
///                    return Double.MinValue; 
///                }
///            }
///
///            public override Double MaxValue { 
///                get {
///                    return Double.MaxValue; 
///                } 
///            }
/// 
///            public override Double PositiveInfinity {
///                get {
///                    return Double.PositiveInfinity;
///                } 
///            }
/// 
///            public override Double NegativeInfinity { 
///                get {
///                    return Double.NegativeInfinity; 
///                }
///            }
///
///        } 
///#endif // #if GENERICS_WORK
 
    } 
}

// File provided for Reference Use Only by Microsoft Corporation (c) 2007.

                        

Link Menu

Network programming in C#, Network Programming in VB.NET, Network Programming in .NET
This book is available now!
Buy at Amazon US or
Buy at Amazon UK